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- Abst rac t

The d irec t so lut ion of lar ge, sparse unsymme tric se ts of

s imul taneous  equat ions is commonly involved in the numer ica l

solution of algebra ic , d i f f e r e n tial , and partial differential

equa t ions .  This  report  describes two new c lasses  of coinputa-

tional algor ithms for the solut ion of such equa t ions. Each

a l g o r i t h m  de tec ts  ma t r i x  st ruc tu re  su i t ab l e  for  vector  process ing

and , potentially, for fas ter p roces sing on cache machines. One nro-

cedure favors struc ture usually associa ted w ith small spars e

matrice s ; one is direc ted toward se ts of equat ions requiring a

large backing store. Compar isons of timing (on a cache machine)

and of memory re quir emen ts are mad e be tween these new proc edur es

and exis ting general sparsity techniques for a variety of

science-engineering example-s . Issues related to implementation

are discussed. Finally, flowcharts and other user information

are g iven for sof tware implementations of the two algorithms.

3.
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Prefac e

This repor t considers a number of issues rela ted to the

vectorization and partitioning of general sparse matrix 
—

solution algorithms that have not previously appeared in the

sparse matrix literature. Typ ically, these involve processor

model ing and a lgori thm analys is , design , and evaluation ,

particularly as they relate to the imp lementation and use of a

sof tware package prepared by the authors . Wi th this

rather broad topical coverage - perhaps suitable for several

reports - it is felt to be usefu l to present the major results

with page references , for the guidance of readers with specific

research or software interests.

Vectorization

1. The spar se solution is decom posed into symbol ic and

n u m e r i c  phases; in contrast to previously proposed scalar

algorithm s , this vectorized version results in relatively

less symbolic processing time for large matrices (page 21).

2 . The avera ge length (Lave) of vectors processed in
the inner ioop of the numeri c phase , together with the nature

of the processor (scalar or vector), determine the relative effi-

ciency of the vector algorithm . This vector algorithm may be

preferr ed even on scalar processors if Lave is sufficiently

large (pages 21-25). - S

3. Timing comparisons with a variety of other sparse

solvers are g iven for a family of fini te element problems
(Appendix A).

( i )

~ 

_ _ _ _ _ _ _ _ _ _ _ _  
~~~~~~~~~ -~~~~~-
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Part it ion ing

1. 1/ 0 transfer tine to a backing store is an important

issue , especially for the forward and hack substitution steps;

however , careful accounting in the symbolic processing phase

can be used to predict when computation is I/O bound or when

the cost of local store in a virtual system becomes pro-

hibitive (pages 33-38).

2. The megaflop rate , popular in evaluating vec tor pro-

ces sor s , can be us ed to succinc tly display the efficiency of

par tit ioned general sparsi ty algorithms vis-a-vis special full- ,

band- and block-solvers (pages 47-49)

Imp lementation

1. A partitioning of the numeric but not the symbolic

phase is proposed; pros and cons of this choice are discussed

(pages 72-73) .

2 . A ids to equat ion formulation , although strictly not

required in spars e equation sof tware , are proposed to avoid

cumbersome data structure and structural ordering and over-

lap problems (pages 58-69).

3. An i n t e rac t ive  partitioning scheme , based on user

specification of either column breaks or maximum buffer

• s torage , is proposed (pages 77-82) .

4. Ex amples - including For tran code - of use of a sof t-

ware package on par tit ioned and unpar titioned prob le ms are

given (pages 56,104-105) .

a

(ii)

-a

~ 
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 5. Timing results of applying two new sparse solvers to

p roblems in el ectrica l power sys tems , rigid bod y dynamics ,

and e lec tronic devices , and to a family of fini te el ement

prob lems are presen ted (Appendix A) .

( i i i )
‘S
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C1-!AP’l’ER 1 . SPARSE M A T R I X  METHODS

A. Introduction

1. Historical review of direct sparse matrix algorithms

Prior to 1972 , sparse systems of simulataneous equations

tended to result from the solution of one of the following classes

of equa t ions:

(a) partial differential equation (PDE ’s), wher e , after

discretization of the spatial variables , u sing f i n ite d i f f e r e n ce

(FD) or finite e lemen t (FE) me thods , a regularly-structured matrix

was solved using iterative techniques.

(b) ordinary diff erential equat ions (ODE ’ s) or algebraic

equations , where , after time discretization and/or linearization , an

irregularly structured matrix was solved using direct methods.

In 1972 , George [1] showed that , using dissection , a square

n by n grid ob tained from solution of PDE ’ s by 5-point discretization

formulae could be solved directly in 0(n3) time rather than 0(n4),

a prohibitive cost associated with band-solution methods . Later ,

Woo and Gus tavson [2] derived an ordering of the grid points wh ich

made dissection faster than band methods for n greater than 10.

Cons ider ing that itera tive me thods require 0 (n2) time per iteration ,

these results made it feasible for the first time to solve many

“small” PDE problems directly, leaving iterat ive methods only for

large problem s (perhaps n greater than 50) having special structural

and numerical properties. Indeed , in [2] a variety of iterative

and direct solution methods are compared to determine the value of

n f o r  w h i c h  equal  amounts  of “work” ar e requi red. Very recen tly,

Bank [3] showed that certain classes of FD problems can be solved
a

(1)

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
‘~~~~T 
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in 0(n2) time.

2. General vs. special sparsity algorithms

When t he  matrix structure is hig hly re gular and the

numb er of spatial discretizations in the shortest dimension is

small (~~~ 
15), eas ily cons truc ted band e limintat ion algorithms

may be fully justified computationally. However ,

(a) as the grid size grows in a FD or FE problem

a dissection strategy is called for;

(b) as structural irregularity is introduced by

curved or odd-shaped boundar ies , by the use of a family of finite

elements , or by implicit boundary condit ions resul ting from

algebraic or ordinary differential equations of a physically-

connected external system , a band algorithm becomes progress ively

less efficient; examples of the latter mixed PDE/ODE/algebraic

systems are shown in Table 1;

Par tial Dif . Eqns. Ordinary Di f. and
(re gular spars ity) Algebraic Eqns.

_________________________________________ (irregular sparsity)

Struc tures Mechanisms

Semiconduc tor Circuits
Dev ices

Combu stion Emis s i ons

I

Table  1. Related applications yielding mixed sparsity s t r u c t u r e s

( 2 )

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
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(c) when a vector computer architecture or a

backing store is necessitated by a large problem size , spec ia lized

programming techn ique s may by required to achieve acceptable

so lu t i on  e f f i c i e n c y .

I)issection-re lated software to implement (a) exists in a

v a r i e t y  of fo rms.  E a r l y  programs required g r id  s i z e s  r e la ted

to a pO~~~~ r oF 2 and i nvo lved  da ta  s t r u c t u r e s  t h a t  r e q u i r e  r e c o d i n g

of the  eq u a t i o n  f o r m u l a t i o n  s tep  in a b a n d - r e l a t e d  s o l u t i on .

This complication induced George in a later publication [4]

to consider less efficient dissection methods that retain some

of the simplicity of band matrix program~1in~ .

Gen eral spar sity me thods - where an arbi trary ma tr ix

struc ture is allowed - offe r an alterna ti ve to bo th banded and

dissected grid solution methods . General sparsity software can

accept a matrix formula t ion in any order , since the equations

can be reordered interna lly by the sparsity sof tware to correspond

to a banded or a d issec ted so lu tion . Usua l l y , the principal

price extracted of the user for this generality is a preprocessing

s tep where the matrix struc ture is analyzed and an effic ient

numerical solution algorithm prepared specfically for that

s tructure . The introduc t ion of add it ional struc tural irregular ity

for any of the reasons cited in (b) above is then at least

concep tually tr iv ial.

3. Summary of repor t

The above rationale for use of general sparsity software

would appl y to any of a number of exis ting sof tware packa ge s

(3)
3.

~~~~~~~
uI- T~~~~2’- - 
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s ] ,  [ 6 ] .  The aim of t h i s  report  is to expand the role  of

such algorithms by

(a) proposing alternate data structures that

improve the storage efficiency of exi~ ting software when solving

large systems of equations associated with large FD and FE problems ;

(b) including the optional use of a backing

store when , becaus e of problem siz e, either real memory capa c i ty

of a dedicated system is exceeded or total memory costs become a

significant factor in a virtual environment:

(c ) reco gn izin g local structure in the matrix

that can be exp loi ted by a vec tor p roc essor and , incidentally, can

improve solution times on cache “scalar” processor as well.

Two increasingly sophisticated software pacakages are des-

cribed which permit the reader to evaluate the programming

effort involved in utilizing general sparsity techniques.

As the problem si ze grows , ba ckin g store and spec ia l arch itec tures

can be brought in to use wi th no chan ge in the equa tion formula tion

and a minimum of addi tional pro gramming e f f o r t .

B. Sparse Matrix Factorization

1. Mat r ix  f a c t o r i z a t i o n

Consider the equation

A x = b

where ~ = 
~Ia ij l nxn , and ~ = [b j j l nxl con tain cons tan t coef f i cien ts

- - 

- -‘- 5 .-. ‘ -“ -ii
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and x = [ x . . ] 1 is a vector  of unknowns.  We w i l l  choose to

factor A into the triangular form

A =  L U

where  ~ = 

~~ij
1 nxn ’ a lower t r i a n g u l ai  m a t r i x , and U = [U

j j
]nxn~

an upper tr iangu lar ma tr ix , and either = 1 for  1 � i ~ n or

u.~ = 1 for 1 ~ i ~ n . In gener al , L and U w i l l  conta in  the same

non - z e r o  posi tions as A , plus “fill” pos it ions crea ted by the

elimination process.

2. Software implementation

Th e u se of spec ial iz ed al gor ithms and da ta-hand l ing

methods for sparse equations is almost a decade old [7].

The random s t ruc tu re  is usual ly  described by a b i t  map or a

l inked l ist . This struc ture is then of ten pr eproces sed symboli c-

a l ly  to reduce the compu tat ion in a subsequen t (repea ted)

n u m e r i c a l  s o l u t i o n  phase (F igure  1). The three  common two-s tep

( symbo l i c /numer ic) so lut ion methods are :

(a )  code genera t ion  [ 8 1, [ 6 ] ,  where a la rge  set

k of exp li c it mach ine  ins truc tions - inc luding  ar ray  indic es -

ar e gen erated in the symbolic  s tep; these ins tru ct ions “map” the

g i v e n  A and b into x during the numerical solution step ; an

in st ruc ti on mu st be gener ated for each ar i thme tic opera tion , so

tha t i f a fu l l ma tr ix were being processed 0 (n 3) ins truc tions

would be re qu ired correspond ing to the 0(n 3) ar ithme ti c opera tions ;

(b) interpretive index generation [ 9 1 , [6] similar

to (a) except that the code is in the form of array indices and

hig h er level ins truc tion s ; fo r  example , the ins truc t ions mi ght

spe ci fy row/ co lumn opera t ions such as inner and ou ter produc t and

(5)

~~~~~~~
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M a t r i x  Structure

Pivotj Symbolic
Order 1~~~~~~~~ Preprocessor ]

Machine code , or
in terpre table indices , or

L U map

IFormulatel F Solve 1 J Update 
_____

- 

~~ Equations~~ ~~Equationsj’ ~~Variables 
f I

Figure  1 . Model symbol ic and num eric al solu tion pr ocedure

the ind ices would speci fy  the non - zero po siti ons of the row/ co lumn ;

less storage is required than (a) - usually a factor of S or 10 -

but execution is commonly 3-S times slower;

(c) LU map approach [lO] [l2) where the map of L and U

(i.e., A and i ts f il ls)  i s determined by the prepr ocessor;  f or

a fu l l ma tr ix , only 0(n2) stora ge is re quired f or the map of L

and U , the same as for the numeric al values of the matr ix it s e l f ;

th is procedur e appears to be a s fas t as the me thod of ( b ) ( s e e

Table A3) and for these reasons (b) is not often used .

De tailed speed and stora ge compar isons of (a) and (c) for

S two FD examples are given in [2][ll].

In th is repor t, the LU map approach is chosen because of its

reduced stor age requ ir emen ts . Th e stora ge map is fur ther reduced

by compress ing  the data s t r u c t u r e  for  a d j a c e n t  n o n - z e r o  m a t r i x

positions , i.e., den se se gmen ts of rows/ co lumns .  Thus , the storage

of the structure of a full matrix would be 0(n), since each row!

a column could be specified by the address of the first row/column

position and by the row/column length (n).

-a (6) 

- 
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It will be show n that  r ecog n i t io n o I s uch  st r uc to i-c a l l ow s in c rca sed

so lu t i on  e f f i c i e n c y  for  cache  “ sca la r ” m a c h i n e s  and can be expected

to vast ly im prove the per fo rman c e of vec tor proce ssors.  Be sides

preparing a map for the numerical solution , the symbolic preproces-

sor - f a r  f a s ter than the numer ical so lv er for  lar ge m at r ices  -

is u s e f u l  for  p r ed i c t i ng  so lu t ion  t imes  and fo r  o p t i m i z i n g  the  au to -

ma ti c or in terac tive par tit ionin g of the solu tion when a back in g

store is used.

C. Vectorization

1. Vectors and vector ins t ruc t ions

Clos e ly associa ted with the condensation of the storage

map of L and U by recognition of higher level structure is the

e f f i c i e n t  process ing  of th is  s t ruc tu re  by exp lo i t ing  two f ea tu re s

of modern scien ti f ic  processors - pipe l in ing  and pa ra l l e l i sm .

Th e fo l lowing discussion of the use of thes e fea tures w i l l  be

qu i t e  s i m p l i f i e d;  fu r the r  desc r ip t ions  and ra tionale s w i l l  be

presented in Chap te r  2 .
S We will use the word vector to mean an array of data. Thus ,

a vector  operat ion is an opera t ion  on arrays.  This includes

row/column opera t ion s on ma trices , operations on subniatrices

(b locks) , etc.

For purposes of later reference , we dis t inguish  be tween

(a) a s imple vector opera t ion , to replace the

F o r t r a n - l i k e  operat ions

D O 1 M = l , N

a 1 C( 1 1(M) ) = A(1 2 (M ))  0 B( 1
3

(M ) )
$

(7 )
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where o indica tes  an a r i t h m e t i c  or logical  opera t ion  and where

11( M ) ,  12 ( M ) ,  and 13 (M) are linear indexing functions of the

form I~ c~. + 
~~~ where and are a r b i t r a r y ; thus , w i t h

o = + , = 0 , 
~~ 

= 1, the arrays A and B are added to produce

the ar ray  C. I f  o = ~~~ , I~ = M , 12 
= 1, and 13 = M , a “broad-

cast ” mul t i ply ( m u l t i p l i ca t i on  of a vector by a scalar)  r e s u l t s .

(b)  a hi gher level vector opera t ion  to replace

the t r i p l e  (or double)  loop

DO 1 J = 1, Nl

DO 1 K = 1, N2

DO 1 L = 1, N3 (4)

1 C( 1 1(J) , 12 (K) , 13 ( L ) )  = A (14(J) , 15 (K) ,16( L ) )  o B( 17(J) ,18(K) ,

1
9

(L))

where I~~(M) = o.~ + 
~~~~~

Computa t ional ly , the important  charac te r i s t i c  common to

(a) and (b) is that  only one vector “ s ta r tup” is required in each

case. This startup may include time to de termine Nl , N2 , N3

in a convectional ( sca lar )  machine and/or to fill the arithmetic

pipeline in a vector processor. In contrast , the “opera te”

S t ime includes those opera t ions  tha t  mus t be repea ted for each

pass th rough  the ( lowest  level)  loop , and wi l l  include f l o a t i n g

poin t  a r i t h m e t i c , in addi t ion  to array-  indexing and loop t e rmina t ion

test , depending on the machine  a r c h i t e c t u r e .  In general , fewer

vec tor  s t a r tups resul t  in less t ime devoted to overhead ca l cu la t ions

and thus a hi gher overall efficiency .

(8)
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2. V e c t o r i z a t i o n  e f f i c i e n c y

This  e f f i c ie n c y  may be q u a n t i f i e d  as f o l l o w s .  The

computa t ion  t ime to per fo rm the vector  opera t ion  is

T. = T + r.T
1 S i 1 0~)~ ( 5)

where T 5 is the startup time , T0~ the operate time , and

the vector l eng th .  If T 5 and T0~ are independent of i , then

the time to perform m vector operations is

m
T = m T  + T  E r.

°1~i=l 1

Since the operate time T0~ is the useful computation time , def ine

the vec to r i z a t i on  e f f i c i ency  as

operate  time
n = ——

star tup time + operate time

(T0~ /T 5) ( E r 1/m)
= 

1- 
m (6)

1 + (T
0~~/T 5) 

(
~ =

E
1

n ih/ m)

A l t h o u g h  T / T 5 is a machine parameter , the q u a n t i t y  41r ./ m  = L ye
• is problem-dependent , and i den t i f i ab le  as the “average vector

length.” Note that an efficiency of .5 is achieved when the

average vector  l eng th  is equal to the r a t io  T 5/T 0~~.

Al though  (6) usual ly  applies  to only a s ing le  c lass  of

(9)
-1
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vector ins t ruc t ions  (s ince T is assumed cons tan t )  s i m i l a rop 1
formulae can be derived from (5) when several classes of vector

i n s t r u c t i o n s  are involved . In the f a c t o r i z a t i o n  problem , we

w i l l  show that  the inner loop consis ts  of a vector m u l t i p l y

and a vector subtract , each of the same length .  I t  is easi ly

demons tra ted tha t the e f f i c i ency  ob ta ined from ( 5) is then the

same as for  a single ins truc t ion wi th star tup and opera te t imes

equal to the sum of star tup and opera te times for a sub trac t and

mul tiply . The average vec tor leng th of the single t ime-e quiva len t

ins truc tion is therefor e a useful  concep t .

(10)
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A. Row vs. Co L umn O r d e r i n g

For purp oses of th is d iscussion , assume that the equations

represen ted by A x = b canno t be locally decoupled , so that only

single rows/columns may be pivoted upon at a time (see [13] for

mul ti-row elimination) . Associated with an n x n matrix , n

pivot steps can be identified , each (r th ) step involvin g a

division of the rth row or column by the pivo t elemen t and a

sequenc e of mul tip ly-sub trac t opera tions invo lv ing the r th

row or column and other rows or columns of the ma tr ix .

Althoug h we will have reason later to study a variety of

factorization algorithms that involve backing store and arch-

i tec tura l  issues , for  the present  two ra ther  convent ional

procedures will be compared.

a) . Row -order in g

Let 

((k )
)
T 

= [U
~~~+l. 

. .
~~~~~~~~~~~~~ i 

(7)

( 

(k) )T = 
(k) (k) (k)  (8

~j,n ~r,j r,j+l” .er,r I

where the subscr ipts on the vec tors correspond to be g i nn ing

and end ing column number s, and where u~°~ = a r m  ~~~~ = a r m  .

The row-wise factorization step is described by

[ ( f ( k )  ~T (k)  T — ~ (k- l) T (k-l) I
k-’- l ,r’ (Ur+l ,n) ~ 

— 

~~—k4-l ,r~ 
(Ur+i ,n) ~ 

- 

~r , k Uk+1 , n ( 9 )  —

k = 1,2,.. .r-1

(11) 
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( r - l )
~r+l ,n 

= 

r r  ~ r + 1 , n

= £(r l)
—l ,r —l ,r

The forward and back substitution steps require the s o l u t  ~on

of L ~ = b , U x = ~~~ . Using the same vector notation as (‘-8 )

- 

y
1 

= b
1

= (b r - 

l ,r~ l)
T
~ ~l ,r - l~~~ rr r = 1 ,2 ,.. .n (l0~

=

Xr 
= - (Ur+l n)

T r = n-1 ,n-2 , .  . .1 (11)

The row orde ring of L and U requires the inner product of two

vec to r s .

b ) .  Column-order ing

Let

(k) 
= 

- 

(k) £ (k)  
= £ (k) -

Uj,r Uj,r —r -4- l ,n r+l ,r

u (k)  £(k)
r , r n , r

where u~°~ = am r  = am r  . The columnw ise fac tori z~ tion

5
, is

(k )  ( k - l )
Uk+l ,r ~k+l ,r

~ (k)  £ ( k - i )  
- U k r  ~k+ 1 ,n k = 1,2 , .. .r - l  ( 12)

—r+l ,n —r+l ,n

(12)
-a 
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- 1 (r- l)
Lir + l , n ~~~~ ~ r + l , n

rr

( r - 1 )
~ l , r = 

~ 1, r

and the  f o r w a r d  and back s u b st i t u t i o n  s tep  is

= b1, n —

( r )  
= 

( r - 1)  
- y ~ r = 1 ,2 ,. . . n- l  ( 13 )

~r+1 ,n ~r+1 ,n r —r+l ,n

(n )  
= 

, ( n - l )
‘
~‘1 ,n —l ,n

= x~ ’~~/u~~

r)  — ( r + l )  
- 

~~X l r  — 

~-1 , r r — l , r - l

r = n - l , . .  .1 (14)
= x~~~~/u rr

Fh1 Lh o ice of row- or column-ordered algori thm can be significant

:t scalar processor (to be shown experimentally later). For

a vector processor having an efficiently-imp lemented inner-product

instruction , row ord er ing is pr efe r red ;  howev er , a processor

with chained multiply-add arithmetic units such as the Cray-l

clearly suggests use of column-ordering . The reader will

recognize , however , that only the forward and back substitutions

need be changed to accommodate row-ordering since Urr 1 and

2. = 1 in the row- and column-ordered methods , respectively.

Thes e opt ions ar e avai lab le  in subrou t in es (VMBPR , ZMBPR) and

(VMBPC , ZMBPC) respectively in the software package of Chapter 3.

U3)
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B. l’he LU M ap Appr oach and It s  Sym bol ic V ec to r iz a t io n

1 . m t  roduct ion

The purpose of the symbolic phase of Fi gure 1 is to determi ne

the fill characteristics of A , i.e., the exact structure of L and

U. This information is used by the numeric part to reduce the

solution time (Gustavson [10] cites a factor of 2-3 for the

LU map approach) .

To acquaint the reader with this approach an example using

Gustavson ’s “scalar ” map is shown in Table 2.  Special note

should be taken of

(1) the fill positions detected by the symbolic phase in the

generation of the LU map ;

(2) the use of map indices in the numeric solution to

extract information from the numeric arrays A , L , and U;

(3) the use of an expanded current column (X array) , requiring

zeroing, expansion , and contraction in the loading and storing

process (see [10] and page 28 of this report for alternative pro-

cedures)

(4) the opportunities for the use of (simple) vector opera-

tions in the numeric solution , as evidenced by the indexed array

operations marked “vector ”.

It should be pointed out that fill detection is essential to

any sparse matrix factorization al gorithm . The LU map approach

exploits the fact that this costly process need be performed onl y

once for a given matrix structure , allowing multi ple solutions

with different numerical values - as occurs in a Newton lineari-

zation process. -

a-  ( 14)

‘a
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3 0 0 1) 2 3 0 0 0 2

o 4 2 1 0 1) 4 2 1 0
I I I

A = 0 2 b 0 3 LU = 0 1/2 5 - 1/ 2  3

0 1 0 3 1 0 1/4 -1/1 0 27/10, 13/10

2 0 5 1 5 2/3 0 3/5 13 /271 b7/54

current
column

matrix completel y-factored matrix

(A (column-ordered numeric values of A matrix )
3 , 2 , 4 , 2 , 1, 2 , 6 , 3 ,1,3 , 1,2 , 3 ,1, 5

f r om ~JA (JA( j ) poin ts to beginnin g of jth column of A in J A)
user 1,3,6, 19~ ,l2 ,16

1._lA (column-ordered list of row numbers of A)
1,5 ,2, 3 , 4 , T2 , 3 , 5J, 2 ,4, 5,1 ,3,4,5

JL (JL(j) point_s to beg inning of jth column of L in IL)
1, 2,4,6J,7

IL (column-ordered list of row numbers of L)
gene- 5, L3

~~~ 4i_5
~ ~ fillrated

b~- 
- JU (JU(j) points to beg inning of jth column of U in IU)sym 1 ,1,1 ,2 ,4,7bolic

IU (column-ordered list of row numbers of U)
2 , 2 ,.~ ‘~~‘

3 ’4 _ .fill

~ene- 
(L (column-ordered numeric values of L)

~
ated 2/3 ,l/2 ,l/4 , 1/10 ,3/5 ,

n~me- u (column-ordered numeric values of U)

n c  2 ~~~~~~~~~~~~~~~~~~~~~~~~~~~

~a c t O - ~ -

i~~~Z R -  ~~ I (o rd c - r~ d nu ’”er ic  v~~1ues of  d i~i c ’o n a l )
t i o n  3 , 4 , 5 , ,

(a) Example up to factorization ol fourth c o l u m n

Table  2. Example of use of LU map in factorization

( 15)

- 
- —

LIIL4.r ~~~~~~~~~~~~~~~~~~ 
.—-

~~-- ~
- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — T~~~~~~~~~~~~~~~T T t  ~
____ —i-—- --—~

_____ _ • ~~~~~~~~~~~~~~~~~~~



1. ~ L-~ro exp a n d e d  c u r r en t  c o l u m n  (N a r r a y )

2 .  L oad c u r r e n t  c o l u mn  w i t h  fo u r t h  c o l u m n o f A

X ( 2 ) = l
X(4)=31 vector

X (5) =1]

i n d i c e s [
f r o m  I A I

3. Factorize fourth column

X(3)=X(3) -X(2) *L(2) 0 (1) (1/2) =- l /~~1

X ( 4 ) = X ( 4 ) ~~X ( 2 ) * L ( 3 ) = 3 ~~( 1) ( 1 I 4 ) = l l / 4  “ector

X ( 4 ) = X ( 4 )  ~X (3)*L(4)=l1/4~ (-1/2) (-l/10)=27/1 (/ - .

X ( 5 ) = X ( 5 ) ~~X ( 3 ) * L ( 5 ) = l ~~(~~l / 2 )  ( 3 / 5 ) = 1 3 / l 0  ~e~~tOi

4’ ‘l’indices ~starting
f rom IL ~—~ind i c es
of pre- Ifrom JL
V iOU 5
col u mn s

DI (4)=l/X(4) 10/2~
X (5)=X(5)*DI (4)=13/27

4. Store current column

ii r ~ ~ — v ( ~J~~~~(~~j . \ 1 )~ vector

L ( 6 ) = X ( 5)

s t a r t i n g  ~ lindices from
indices 1 L_

~.~I I L , IU of
from JL ,JU cur r en t co lumn

(h) Steps in Factorization of Fourth Column

Table 2. Example of use of I~~ map in factorization

(1 6 )
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-l he ~ie t a i l  s o t t h e  s y m b o l  i c map gene r a t  ion are lef t for

CLI~i1)teI 
3. However , the following two sections are intende d

to g i v e  i n s i g h t  into t h i s  p r o c e s s  by discus sion ol vectorize d

d a t a  structu re and symbolic operat ions on it duri ng the factori -

zation process.

5 
(17)
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2 .  Vec to r i z e d  l i s t  data structures

Consider a column of a sparse matrix having the non-zero

row p o s i t i o n s  shown in Figure 2 (before fill). T h i s  structure would

be desc  i- ihed i n a convent i o n a I ordered lis t as

31 ,32 ,...36 ,39 ,42 ,43 ,...47 (15)

Such a list enumerating all row positions will be termed scalar

storage. Clearly, the list can be shortened by identifying sets of

conti guous positions (vectors) and retaining only the first and last

r ow numbe r s , viz ,

31 ,36 ,39 ,39 ,42 ,47 (16)

This form is natural to looping operations for a scalar processor ,

where pairs of numbers are directly usable as upper and lower loop

indices. Alternatively, the initial row position and the vector

length could be stored as

31 , 6 , 39 , 1 , 42 , 6 ( 1 7 )

This form is favored by vector processors with hardware that counts

down vec to r  a r i t h m e t i c  ope ra t i ons  to t e r m i n a t e  a vec to r  o p e r a t i o n .

Another choice , preferred when a significant number of single-

ton (scalar) positions are present , represents a vector of length

one with a minus si gn prefixing the row number as

-
‘ 31 ,36 ,-39 ,42 ,47 (18)

This latter structure has been adopted in this report.

(18)
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3. Vec tor fills

The mu I t p1 y — s u bt  ract operat ion of (l 2) can rc’su It in pro —

duction of fills that must be detected in the symbolic p h a s e .  In

Fi gure 2, the process of multi ply ing the kth col umn o f L ( termed

a j~-eceedin~ or recalled column) by Uk ,r and subtracting from the

Before Fill Af ter Fill

rth column

3

h ~5-n
kt column 33 (31 ,36) 3

34 34
35 35

36 36 36
37 I 37
38 I 38
39 -39 (31 ,47)

(36,43) 40 , I 40
1 • ‘ 41

42 2
43 43
44 44
45 (42 ,47) 4 5
46 46
47 47

Figure 2. Examp le of vec tor f ill , with data structure
descri p tion (scalar indica ted by - s ign)

~
th column of L (termed the current column ) and U is depicted. The

zero-valued positions 37 ,38,40,41 , which initiall y separate two

vectors and a scalar , ar e filled by the dense vec tor (36 ,4 3) in

the kth column .

The symbolic phase produc es the LU map by scann ing the number

pairs representing the vector structure of all the preceeding

column s and the current column to determine zero-valued regions of

(19)
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the latter covered by at least one of the former. These are the

fill positions.

C. Comparison of Scalar and Vector Sparsity Methods

1. Introduction

Al thou gh one could expec t to reduce s torage by compac t ing

vectors in the data structure and could hope to exploit the

structure of machin es archit ected to efficiently process

looped ins t ruc ti ons , it is less obvious that conventional

(scalar) mach ine performance would benefi t from vec torizat ion.

In this sec t ion we s tudy both the storage and the speed

issues in some detail , showing quantitatively the advantage of

v e c t o r i z a t i o n  even for  one of the mos t recent scalar processor s.

2. Storage

In Gustavson ’ s LU map approach , the column ordered map of

L and U is saved in arrays IL and TU. Thus , for every numerical

value in L and U, there is a symbolic value in IL or IU (Table 2).

Now consider an LU map with m vectors of average length 2..
The scalar and vector maps require m2. and 2m locations respectively,

exclus ive of singletons. Now consider the symbolic (2-byte) and

numeric (8-byte) storage. Define
vectorized storage

storage fac tor = ___________________

* scalar storage

• wh ich becomes
• 2(2m) + 8(m9.)

s torage fac tor  = ______________

= 

2(m9.) 4 8(lfl2.)

H 
2.

Thus, a vec torized map will resul t in a 20% s tora ge savings as

2 . - * co .
(20)
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3. Speed: s ymbol i c

A speed improvement is possible in both the symbolic and

numeric processin g s tages .

Consider aga in in Figure 2 the symbolic process of crea t ing

a vector  fill. Since each vector is described by a pair (beginning

row p o s i t i o n , end ing  row pos i t ion) , the  length of the data

s t ruc tu re  does not depend on the vector l e n g t h s .  S i m i l a r l y , the

ope ra t ions performed on this struc ture to determine f ill are not

changed if , for example , all vector lengths are doubled. Obviously,

this is not true for the sc a lar approach , where each row pos it ion

mus t be ex amined separa tely for fill.

In Table A3 of the appendix , symbolic solution t imes are

given for both scalar and vector versions , each processing a

family of finite elemen t ma trices. For ma t rices of dimens ion

9 and 49, the scalar version is fas ter; the ve ctor ver s ion is

nearly three times the speed of the scalar for a matrix of

[ dimension 961.

4. Speed: numer i c

A more impor tant compar ison of the scalar and vector app roache s

involves the repeated numerical processing stage. Although

computer architec ture charac teris tics - pa r t i cu l a r ly  the extent

of instruction and operand pipelining - are quite influential

here , nonetheles s it is possible to cons truct a simplif ied model

of a typical vectorizeable operation and discover the conditions

in which the sca lar approach may be preferable.

$

(21)
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packed expanded
th thk r

column column

Figure 3. Subtraction of packed (kth) column from expanded (1.th )
current column

The nost time-consuming part of the factorization algorithm

is the multiplication and subtraction step of (12). The numerical

values of the kth column are assumed packed as illus trated in

Figure 3. Multiplication by uk ,r can therefo re he perf ormed in

a loop or vector mode without reference to the row positions.

However , the subtraction of (12) involves knowledge of the row

positions; this is shown in Figure 3, where three segmen ts

of the kth column are depi cted be ing subtrac ted from the ex panded

rth column . This in turn requires that the row position must be

addressed either one at a time - one for each numerical value -

or in a vec tor sense - the beginning and ending row address of

a dense column segment. A Fortran imp lementation of this sub-

• traction process for a column in the numeric phase would be of the

form

DO 2 J=Nl ,N2 N3=IL(N l)
K=IL(J) N4=IL (Nl+ 1)

2 X(K)=X(K) - Y (J+L) DO 2 J=N3 ,N4
2 X(J)=X(J) -

0 Scal ar Vector

( 2 2 )
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Here , the current column (X array) is addressed through the IL

ar ray in the scalar case ; in the vector case , IL con tains the

beginning and ending row numbers of a dense segmen t of the kth

column .

Clearly , the vector algorithm requires more startup time -

to compute N3 and N4 - but less loop execution time than the

scal ar case , which involves indirect addressing.

It happens that these simplified loops are not representative

of either the fac torization or the subs titution steps. A more

extended test is given by the loop timing program of Table 3,

where vectorized and scalar versions of both inner product and

broadcast multiply-subtract implementations of the inner loop are

timed. The inner product is usually associated with a row-ordered

substitution process (see Section A) whereas the broadcast operation

is used in row-ordered factorization , column-ordered factoriza t ion ,

and column-or dered substitution. All loop operations may be

charac teriz ed by a loop s tar tup (T 5) and a loop execu tion (T0~)

in the manner of Eq. (5); experimental results are given in Table 4

in terms of these parameters.

Loop descri ption Star tup Execut ion
(psec) (psec)

Vector inner product 2.6 1.6

Sc alar inner produc t 1. 1 .7

• Vector broadcast-subtract 2.8 2.24

Scalar broadcast-subtract .72 2 . 4 2

Table 4. Loop timing results; Amdah l 470V/6 ,For t ran H , dou b le prec ision

Comparin g the two broadcast loops , the vectorized version has a

( 2 3)
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C.•.. TI M ING TEST FOR I NNER LOOPS OF AL T ERNATE FAC T ORIZ A T IO N
C AND SUBSTITU T IO N ALGORIT HMS

IMPL ICI T REAt..8(A—N .O—Z)
DIMENSIO N x(zuIO)’y(ZeIU).JC(sOell)
oo iz j.i.zses~X(J )~ l.O—6I - 

-

12 Y(J ).x(J)
6 00 1 ~ 1’bI6’I

1 JC(J).J
XA .1.
REAO (S.22)LVECT
NT IMES .SlOII/IVECT

-‘ — IRIT€(6.22) LVECT ’NTI$ES
— - 22 FORMAT (2IS )-

- 
• ) 

aS
5- P11.1

- I N2 .LV€CT
- - ‘

~ C.”. TEST FOR OU$UV SON FA CTO RIZAIIO N (SCALAR)
CALL TIME (•)
00 3 Ns1.$ilM ~S
00 2 J.N1’NZ
s(.JC(J)

2 x(M).x (1I)—xA.Y(J’t )
3 CONTINUE

CALL TIMEC 1.1)
— 

* C...’ TEST FOR •US TAVSO N F. I B. SUB . (SCALAR)

CALL TIME( I)
00 7 $I.1,NTIMES
00 6 JuN1 ’N2
NaJC (J)

• SUM .SUM—X(J) .V(N)
7 CONTINUE

CALL TIME(1.1)
P11.6
00 11 ~~~~~~~~~~
JC(J) .URAND( I$IT) *1I6S41

Ii JC(J.1)aLVECT.JC(J)-1
P15.166666

C..’. TEST FOR VE CTORIZED FACT. AND SUB STITUTION
CALL TINE (a)
DO S M .1.NTl$ES
lvii..

S $1aN1.1
N3.J C(N1)
N1 .N1.1
$4 a JC (N 1)
JD 1FF. IVI I-N3 .1
00 4 JEN3.N.

4 X(J)sX(J).X& .y (j+JDIFF )
IV T I. JO 1FF .114
IF(N1 .GT.M5)GO 10 6

S CONT INUE
CALL TIME( 1~ 1)
P11.6

C.... TEST FOR V ECTOR IZEO INNER PRODUCT
SU—I.D .
CALL TIMECI )
00 15 N.1.NIINE$
lvii ..

IS P11.111.1
N3aJC(N1)
P11.111.1

- N4.JC(N1)
• JDIFF .IVT I—N3 .1

00 14 J.N3.N4
14 SUN.SUM— *A .Y (J.JOIPF )

VII . JO 1Ff .114
IF(N1.IT.N5)e0 TO S

15 CONTINU E
CALL IIME (1 .1)
b i O s

• END

Table 3. Timing program for inner loops

I
(24)
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l a r g e r  s t a r t u p  hut  a s m a l l e r  loop e x e c u t i o n  t i m e . The t o t a l

loop timings become equa1 when (2. is the loop length)

+ 2 . 4 2 ~~ = 2.8 + 2.2 4~’

or Q• = 11. Thus , a scalar proces sor is found to opera te pre-

feren t ially on vec tor s ; as 9. -
~ the loop execu t ion t ime of the

vec tor ized ver sion is 2.24/ 2.42 = .92 the t ime of the scal ar.

These timings will be used throughout the report to estimate

t h e  c o m p u t a t i o n  times for large problems. To illustrate this use ,

consider the problem of estimating the relative times of scalar

and vector factorization of the 961 x 961 matrix of Table :\3 using

broadcas t inner loops. The avera ge vec tor lengt h (L ave) of this

loop is taken from Table A2 as 6.85 elements. Therefore ,

sc a lar loop t ime .7 2 + 2 . 4 2 ( 6.85)
________________  = ________________  = .95
vec tor loop t ime 2. 8 + 2 . 2 4 ( 6 . 8 5 )

Th i s compare s wi th a fr act ion for the factoriza t ion s tep from Table

A3 of 1146/1309 = .88. Both ratios decrease for the smaller matrices I
in the f i n i te elemen t f a m i l y  studied , as Lave becomes sm al ler and the

vector loop startup becomes more si gnif icant .

D. ~ymbo 1ic vs. Numeric Spçed

As the average vec tor length increas es , the symbol ic proce ssing

time should decrease relative to the numeric time . To quantify this

conc ept , consider a recalled column of L wi th m vectors of average

length Lsub being multiplied by a sc alar and sub t rac ted  form the

current column . The symbol ic proc essing can be expec ted to be

• proportional to m and the numeric proportional to mLSUb . Therefore ,

N(numer i c proces sing t ime)
- = K L  

b 
(19)

S(symbo lic processin g t ime) SU

(2 5 )
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This s i m p l i f i e d  a n a l y s i s  y i e ld s  s u r p r i s i n g l y  cons i s t en t  exper i -

mental r~ su1ts. The LsUh is the average vector length of the subtract

operation in the inner loop , a quantity that can be measured experi-

men tally and calcu la ted p rec i se ly  for the d issec ted f ini te el emen t

grid. In Table 5, the K of (19) is shown for all the sparse matrices

studied. For the wide range of matrix size and structure ,

.24 ~ K < .3 1.

Using K = .25 , one can estimate from Table A3 the N/S ratio for the

gen eral f ini te elemen t gr id  as

N 
— 

( 13)2 n

S n - 2 .96

giving for a 126 x 126 grid N/S = 4. Since the symbolic phase

invo lves ma inly compari son opera tions wi th ordered pairs of number s

(to establish fill regions) it can not be expec ted to be itself

vec tor izeab le. Thus the above value for K would be much smal ler if

both phase s were run on a vec tor machine. The symbolic phase -

viewed as a v e c t o r i z a t i o n  step - would mos t efficiently be executed

on a sca la r  proces sor , and the numer ic phase on a vec tor pro ces sor.

As the N/S rat io becom es larger , the symbolic step becomes

useful as a s imulation too l . The number , leng th , and type of

vec tor opera tions can be determined in the symbo l ic and , knowing

the func tional charac teris tics of a proc essor , computat ion times

can be predic ted . This is especial ly useful for es t imating solution

times of vector processors that are not conveniently available.

Such a s imula tion p rogram has veen devised and has been useful in

ob ta ining prec ise vec tor-rela ted structural inf orma tion such as

displayed in Tables A2 and AS.

I
I ~
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1. Dissected Rect. Grid N/S L b K = (N/S)/ L bMatrix (grid) size su su

9 x 9 (2 x 2) .53 1.97 .27

49 x 49 (6 x 6) .69 2.92 .24

2 2 5  x 2 2 S  (14 x 14) 1 . 1 2  4 . 4 2  . 2 5

961 x 961 (30 x 30) 1.7 6 . 8 5  . 2 5

2. Electric Power Problem .676 2.6 .26

3. Aircraft Landing System .500 1.6 .31

4. Electronic Device Model 4.76 16.3 .29

Table S. Experimental determination of K in Equation 19 , for an
Amdahl 470 V/6 , doub le precis i on , Fortran Ft .

E . Inner Loop Cons idera t ions

1. Introduction

For large  ma tr ices , the multiply-subtract inner loop becomes

the dominant computation . To illustrate , inner loop ope rat ions

for the fac toriza t ion of the larges t finite elemen t ma trix of

Appendix A involves 59026 inner loop startups and 404587 loop

executions. From the benchmark of Table 4, the inner loop t ime

can be es t imated as

Tinner = (59026)(2.8) ‘. (404587) (2.24)

= 1.07 x 10 6 iisec.

This is 81 percent of the measured factorization time of 1.309

sec. of Table A3. Since this es t imate accoun ts for the t ime devo ted

to the mul~ ip 1ication of a scalar from U by a column from L , the

percentage of time devoted to the inner loop computation will

increase w ith the column densi ty of L; from Table A l , this is a

logarithmically-increasing function of grid size.

(
~ 7)
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In the following sections , issues related to the implementation

of this loop are discussed; the scalar-vector comparisons have

been made in section C4.

2. Expanded vs. packed list structures

The inner loop of the fa ctor i zat ion involves a mult iply of

a packed co lumn of L by a scalar  and a subtracti on of the re su lt

f rom th e curren t column being fac tored . The mul tiply  can be carr ied

out in one vector multiply ; the subtraction must be performed with

a t t e n t i o n  to row numbers  of the m inuend and sub trahend . Th is

requirement suggests at least two procedures based on the data

s truc ture of the current column .

1) If the current column is fully expanded , subtraction can take

p lac e using the addres s of the initial row pos ition of the curren t

column as a r e fe rence ;  as i l lu stra ted in F igure 4a , a vector in the

packed kth co lumn can be sub trac ted f rom the r th co lumn wi th on ly

a s ingle address off set calculat ion. The current column mus t be

expanded from the init ially packed matrix and mus t be compac ted -J

after the last subtraction , usually a trivial 0(n) process. Also ,

the s torage demanded by this expansion p rocess is usual ly not a

problem even w ith widely-separa ted elements or blocks of elemen ts .

2) If the current column is packed w ith an accom pany ing vector i z ed

lis t de script ion of the row number s of L and U, then sub t rac t ion  :1

involves  sea rch ing  the lis t until the row number(s) of the minuend
• are in the  range of those  of the subtrahend; in Figure 4b , for exampl e ,

the cur ren t l ist would be scanned for  sub trac t ion of the scalar  in

row 7 and the vector in rows 16-18; the locations of the numerical

va lues in the pack ed current vec tor would then be calcula ted for

the vector in rows 16-18 as (for example)

$ ( 2 8) 

~~~~~~~
‘
~~i~~~~
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pocked expanded
kth r th

column column

20

4

~~~~~~ 

( ~ ~~~~~~zero-varied positions of LU

m l cU offsets colculoled
J from first column position

(a) Expanded cur ren t  column of LU

pocked packed
kth n h

Column strip

E~I2
170 -7 , 16 18

i~1 I~ ~~
—---‘ .—.—‘ column breck

9th position 
_ _  ~~~~~~~~~~~ r

~4 ~~~~ 5 ,7,IO ,i3 ,15 ,20,9,IO ,12 ,18 , etc
V I. ‘!~!~~

~‘ ____ 

/ ski pped
ri~i ~2~i5J33~ 

of fse t off set
IIgi JIII4 ~321 

calcul ~ted calculated

~~ 
-.---_~~~~~~iH3 l from 5 from 15

[
~ 9 7 1

(b) Packed current column of LU

Figure 4. Illustration of subtraction operations on
expanded , packed list structures.

(29)
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[ (7 - 5 ) +1 ]  + L (1 3-l O )’- l I + [(16-l5 )+l1 = 9

denoted on Fi gure 4b. Thus , a running total of the offset of

each vector of the current column must be maintained as the list

is scanned .

The scanning and address calculation is clearly overhead which

must be small relative to the subtraction time itself. Thus ,

the number of vectors represented by the list length - must be

small and their size must be large. This is in fact a characteristic

of matrices arising from large FD and FE problems , where each

column will have on the average 4-6 vectors with an average length

of 30 or more numerical values . Smaller FD or FE problems or

matrices not having these characteristics are more efficiently

solved with the expanded storage of (1). For these reasons , the

programs to be later described were written using both procedures:

the program using only local store for small matrices will have

expanded column storage; the program allowing a backing store will

use  a packed current column throughout. The third data column of

Table A3 and the seventh column of Table A4 y ield a comparison of

timings resulting from expanded and packed current column storage :

e.g., for a 961 x 961 matrix , factorization requ res 1309 msec and

1667 msec , respectively. The relative speeds as a function of n

show a fractional difference decreasing toward 1 between the two

timings , the above ratio being only 1.22. Undoubtedly, the increasing

Lave with problem size is primarily responsible for decreasing

overhead in traversing the packed column lists.

3. Sequencing of the multiply-subtract operations

Another inner loop issue introduced by vectorized solution is

whether the multiplication of a column of L will be performed in a

(30)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~
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single vector operation or whether the multi plication and subtraction

w ill be performed within the same loop. The latter has the advantage

in a scalar  processo r tha t fewer  lo ads and stores are n e c e s s i t a t e d ,

since the result of the multiplication is available either in a

register or in cache memory for the following subtraction . However ,

fewer vector multiplies (i.e., startups) are required for the former

process. Thus both options should be available in a general program .

Note  t h a t  th i s  co ns ide ra t ion  appears in the forward and back sub-

stitution as well. The third data column of Table A3 shows the

significant impact in a cache machine of combined multiply-subtract

operations (the number in parenthesis is the timing with separate

opera tions). For a 961 x 961 matrix , the ratio is 1773/1309 = 1.35

for the factorization and 156/113 = 1.38 for the forward and back

substitution.

4. Assembly-language programming

The speed of an algori thm is rela ted to the language in which

it is programmed. Thus , it is important to document the extent

to w h i c h  an al gor it hm is i n f l u enced by programm in g a t leas t th e

inner loop(s) in a high level language such as Fortran.

An assembly language version of the expanded-col umn factorization

al gorithm of Figure 4a was written , with the inner two loops

(k=1 ,2 ,.. .r-1) of Eq. (12) coded f.n asse•iibly language. Table -\3

g i v e s  t i m i n g  c ompar isons  v i s - a - v i s  a For t ran  H imp lemen ta t ion .

For a 961 x 961 finite element matrix , the ra t io
Fortran H timing 1309
________________ = ____ = 1.41
Assembly timin g 922

shows a s i c ~n i f i c a n t  b u t  not a ty p ical  a d v a n t a g e  in  m a c h i n e - d e p e n d e n t

coding. This depencence on the quality of Fortran code must he

(3 1)
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borne in mind when other timing comparisons are made in this report.

I: .

1. Introduction

F Partitioning the solution of simultaneous linear equations

refers to the division by the user of matrix and/or LU storage

between a local store (either real or virtual) and a slower backing

store accessible to the ALU only through the local store. The

local store contains that part of the matrix on which computation

is being performed , so that read/write (I/O) operations are

necessary between local and backing store to carry out the complete

matrix factorization. The purpose of this partitioning is either

(1) to meet the s torage l imi t a t ions  imposed by a real me mory too

small  to con ta in the complete factored matrix , or (2) to minimize

the cost of computing in a real or virtual system , where costs

depend on both storage used and user-prescribed I/O operations . The

sparse matrix software to be described in the next chapter has

considerable flexibility in performing this partitioning even

before the matrix is numerically solved. Wise use of this flexibility

requi res mod el ing both the computing system and the matrix structure.

The purpose of the fo l lowing  discuss io n is to provide ins igh t  in to

the issues involved and , by example , specific guidelines for the

user  of the sof tware .

Before proceeding, it is worth noting that many of the concepts

and even some of the detailed analysis to be presented app lies to

o ther mem ory he i r a rch ies  such as register-cache , register-main , and

cache-main , wher e a smal l  fas t memory commun ica tes w it h a la rge  slow

memory .

( 3 2 )
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2 . Fixed local s tor e

a. Introduction

T he si mp l e s t  model for analysis is that of a processor with

f ixed loc al s tor e. In this environment, common to lar ge scien ti fic

proce ssors , the I/O opera tions are managed by ei ther (a) the

cen t ra l  processor , or (b) a pe r iphe ra l  processor sharing the local

store wi th the cen tral proce ssor . In the f i rs t case , the t o t a l  CPU

t ime wou ld he the dominant issue ; in the latter , the ratio

= (I/O time)/(CPU time) would yie ld  the fraction of time that

the I/O processor is busy, so that when S > 1 the CPU must  w a i t

on the I/O processor for its operand supply . This sec t ion w ill

concen trate on analysis of the 5 ratio , since the former w ill be

a special case of variable storage time minimization (b=0) considered

in the next sec t ion.

C l e a r l y ,  both the CPU t ime and storage depend on ma tr ix st ruc ture
so t h a t an analysis must be aimed either at obta ining a precise

F evaluation of a given matrix structure or at establishing general

re lationship s for a cla ss of ma trix s truc ture s. In prepar ati on

for  the la tt er , the specific case of a full matrix w ill be s tudied

to gain insig ht into the analysis procedure. The reader may refer

to [17] for alternate partitioning schemes that may result in

less I/O traffic for full matrices than the one to be studied

h e r e .

(33)
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I). Full matrices

In Figure 5, a full matrix of size n (6) is divided into k

partitions of size Sk, each having p n/k columns . The number

of writes to backing store is n2, assuming that the entire factored

matrix must reside on backing store. The number of reads is

1st 2nd kth
strip strip strip

x x x x~~ x x
X % ,5 X X X~~~X

: x ~~~ x i x  x
x x x~~ x I x x•“ lx x x x ’Kx x
X X X

9x2 + Sxl = 23 reads

Figure 5. Counting reads in a factorization

N = 
k-i 

~~~~~ r + p 2 ( k - r ) 2
r r=l 2

= 
p (p-1)(k-l)(k) + p 2 ( k - l ) ( k ) ( k - ½)  ( 2 0)

W i t h  total storage S and strip size Sk, then k = SJ S k 
and p =

The second term of (20) easily dominates the expression , and the

dominant term can be written

P = ~2l• N —
r 3Sk

If the I/O transfer time is c seconds/byte and the floating

point operation time is d seconds/(multipl y-subtract), the ratio

$ (34)
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6 = CN r /dN op . (2 2)

With typical values * c = .23x10 6 and d = 2.24x10 6 and a s s u m i n g

64-bit words , for large n

6 = [ (8n 2 ) 2 ( . 2 3 x 10 6 ) / ( 2 4  Sk ) ] / [ 2 . 2 4 x l 0 6n 3/3]

= . 824n/ S k
Thu s, wh en n/ S k = 1 (only one column is in local store), a near ly

equal time is devoted to arithmetic computation and to I/O. For

Sk larger than this absurdly small value , arithmetic time predominates.

For a vec tor pr ocessor such as the Cray 1, where d = 12.5x10 9

and c = l.56x10 8, the ra t io bec omes

6 = l O . n / S k
and a loca l store of 10 columns would be ade qua te to keep the

processor supplied with operands.

C . Sparse matrices

For families of sparse matrices with a relatively constant

column density, the storage of L and U is typically S = 0 ( nl o g  n)

or even S = 0(n) and the computation time is typically 0(n’~~
5), in

contrast to 0(n2) and 0(n 3) respectively for a full matrix. Thus ,

the asymptotic ratio of computation to storage is lower for a sparse

matrix , hinting that the I/O transfer may become a more significant

cost factor. It will be shown that , asymptotically in n , I / O  can

be a less significant factor for sparse matrices ; further , some

guidelines will be established for the estimating the growth with n.

Th e fu l l mat r ix model of Fi gure 5 may be general ized by

considering a matrix of k partitions , each with Sk S/k storage.

This does not require that each partition have the same number of

*For the Amdahl 470V/6 system at the University of Michigan.

(35)
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col umns as a bove , allowing more columns in the usually sparse

i n i t i a l  co lumn strips. As shown in Fi gure b the L storage is

assumed distributed throughout each strip so that

a) Sk ,L = SL + (k -r ) SL ; S~~ 1~ 
= 

+ (r - 1) S
~ 

r = 1,2,. ..k

b) the  n o n - z e r o  s t ruc tu re  of each column strip is distributed

so that each strip must be recalled* for the factorization

of all succeeding strips.

S~ S~ 2S
1~ 3S11

2 SL

Fi gure 6. Sp arse ma trix par ti tion

The tota l st orage S is then g iven by
k

S = z (SL 
+ S ) + (k-r)S L 

+ (r-k)S 1~r=l o U0 1 1

k
2
S1 

+ 0 ( k )  ( 2 3 a )

wh ere S SL 
= S~ . The r ecal led stor age is then

1 1 1

*It will be assumed throughout this report that only complete L strips
can be recalled.

( 36)
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k-i
N = E (S

L 
+ rSL 

) rr r l o 1

= 
k3S

1 
+ 0(k2) (23b)

Eliminating S1 from (23a) and (23b) gives

N 
k S S 2 ( 2 4 )

r 3 3Sk

the same as (21) for a full matrix.

To experimentally corraborate this simplified expression ,

Table 6 shows the total number of reads of symbolic and numeric

informatio n during the facto-rization of the finite element matrices

of appendix  Tab le A4 , together with the value calculated from (24).

The error is within 10 percent for large matrices , the discrepency

probably due to assumption that all strips must be reca lled in the

factorizati on of the current stri p.

Sk S2/3Sk Experimental

.232 .13 .15

.101 .31 .2 2

.0355 .88 .83

.006500 4.8 4.25

Table 6. Comparison of calculated and experimental recall reads
(in megabytes). S = 306 ,000 bytes.

As a result of (24), for a constant Sk , for S 
= 0(n log n), 0(n)

N r /N op = O ( n ’5 ( l og  n) 2
), 0(n~~

5
) (25)

indicating that relatively fewer reads are required for a sparse

matrix than for a full matrix , for sufficiently large k and n . A

more qualitative analysis will shortly show an excessive number of

reads can occur for typical values of n.

(37 )
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A lternatively, Equation (25) can be used to estimate the growth

of local storage necessary to maintain a prescribed Nr /N op in the

event 1/0 does become si gnificant. For the model , with S = 0(n),

Nr/N op 
= 0(n 5)/ S k (26)

so that a slow growth in local storage will maintain a constant ratio.

A key assumption in the above model was that all preceding

strips had to be recalled for current strip factorization. At the

other extreme , each strip could require the recall of only one

preceding strip, as in an appropriately-partitioned band matrix

(Figure 7). It is easy to show for such a case tha t Nr/N op 
= 0 ( 1) .

Tridiagonal matrices - forms of band matrices - clearly have a

similar dependence.

\ moveru ent
\ of

window

Fi gure 7. Banded solu tion

In general , sparse matrices have a structure that varies between

local and complete strip connectivity . Thus , with a fixed local

store , the growth Nr/N op would b e expec ted to be be tween 0 ( 1)

and 0 (n 5) .

(38)
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One cav eat mus t be rai sed . Sparse ma trices are inevi tabl y

ordered so as to reduce f i l l s  occurin g dur ing solu t ion.  Or der in g

algorithm s can not be expected to detect strip connectivity, and

it is no t uncommon for  str ips to have widely-distributed coupling

t~~)~ther str ips. Thus , a strip storage equalization as illustrated

in F igure 8a may no t y ie ld a m inimum number of I / O  opera tion s, due

to sca ttered non- zero posi t ions.  A slight adjustment yields the

im p roved si tua t ion of Fi gure 8b .

Shlp Storoge : 9 (0 8
x x  x x i  x
X X IX X t’Torces X X ~ X X

x 1 I x*-(recal l  of :x l x

~ ~ 
(.first strip 

~ I
X ~X X  J X  x( X X

X IX

x l x x ix x Ix x x ix x

Ix H x x  x x
5 * 2 + 4 * I (4 reads 4 x I + 4 x t = 8 reads

(a) (
~

)

Figure 8. Reduction in reads by unequal strip storage.

d. The I/O problem for finite element solutions

Although asymptotically the I/O problem may be less serious for

a sparse matrix , the mor e impor tan t issue is whe ther I / O  w ill dom-

inate for a particular sparse matrix. An illustrative analysis for

the finite element family of Appendix A w i l l  show that a serious

problem can indeed exist even for the computationally-intensive

factorization process.

(39)
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I~rom the asymptotic formula for storage count in Table Al ,

the read time can he counted as

T = T
t

(S 2/3S
k
)

= Tt (l24fl-344)224
~
/24Sk (27)

wher e Ttr is the transfer time of a 64-bit word. The arithmetic

operation time is

T0~ 
= Ta (39

~
5(23

~
) )

where I is the t ime of an arithm atic operation. Now define thear

critical dimension as that value of n ( n )  for which Trw = T ;

for n > 

~c ’ Tr wil l exceed T0~~.

I/O Transfer Time Local Store MFLOPS Grid size Storage (S) Time
(sec./word) (megawords) (megawords) (sec.)

ASC (1-pipe) 2x10 7 
- 1O 6 - 8 25. 132 - 1606 1.1 - 315. 7.3 - 13100.

ASC (4-pipe) 2x10 7 
- io *6 1 - 8 100. 60 - S88 .172*~ 34. .16 . 160.

Cray I 10
_ i 

1 - 4 160. 175 - 430 2.2 . 17.1 2.6 - 39.4

*flackiag store not required

Table 7. Grid size for equal 1/0 and operation times
on current vector processors

Table 7 shows that the critical dimension can be surprisingly small

for current vector processors. Ranges for the critical grid size

(~ 2 ) a re  given for normal ranges of Ttr 
- corresponding to

commonly  used d i sc  c a p a c i t y  - and of Sk. An interesting case is

the C r a y - i , where because of extraordinary processor speed , the

I/O time will exceed the arithmetic operation time after 39.4

seconds , even using full i/O channel capacit y and addressable

local store.

( 4 0 )
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C. The I / O  problem in the substitution process

‘(‘he I/O problem is proportionally more severe for the forward

and hack substitution steps , where only a few numeric computations

are performed with each element of the recalled factored matrix.

Consider an arithmetic computation sequence where K arithmetic

computations are performed on the average on every L words in mem-

ory , by a processor with an operation rate of M floating point

operations/second (FLOPS) . Then the local store must be supplied

from the backing store at the rate of

ML/ K words/sec. (28)

In the forward and back substitution stages , the inner loop

instruction will be of the general form

X (I) = X (I)  
- LU (J)*YD (29)

where L U ( J )  contains the elemtns of L and U. Each such element is

used a single time in the two substitutions , so that (ignoring

array X and scalar YD) L = 1 and K = 2 in ( 2 8 ) .  I f  the LI.J a r r ay

is on a backing store , then this store is required to supply

operands for (29) and M/2 words/sec.

This is a prohibitive rate , as evidenced in Table 8. Here ,

the processor utilization ratio given by —

PUR = 
arithmetic operation time

I/O + arithmetic operation times

are given for several of the current vector processors executing

the substitution formula of (29) . The PUR is susally below .15

and becomes as low as .02.

I t  i s  i m p o r t a n t  to no te  t h a t  t h i s  poor p rocessor  utilization

i s  dependent  o n l y  on the  m a c h i n e  sy s t e m  pa ramete r s ,  and not on

t h e  m a t r i x  s i z e ,  d e n s i ty ,  or e q u a t i o n  o rde r ing .  Thus , the concern

( 4 1 )  
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of Kni ght et :11 [19] f o r  banded matrices is shown to he generalized

to the substitution process itself.

Processor I/O Transfer Time Mult. - Sub . T ime PUR
(sec./word) (sec./op.)

ASC (1-pipe) 2xl0 7 
- i0 6 80 x . 2 8  - .0 7 4

:\SC (4-pipe) 2xl0 7 
- io 6 20 x lO ~~~~~ .091  - .019

Cray 1 l0~~ 12.5 x IO~~ .11

Table 8. Projected processor utilization for
current vector processors.

To support this claim of independence of matrix properties ,

the experiments of Table 3 for the Aindahi 470V/6 scalar processor

can he used. The operation time of the inner loop has been

determined in Table 4 (=2 .24x10 6 sec/operation), and the 1/0

transfer time given in Table A4 as 1.83 sec./word. The PUR is

then calculated as for all matrices as

2.24
PI JR = ___________ = .55

2 . 2 4  + 1.83
Ixpi -rim en t all y, the s ame ratio can he determined from the components

4 of TF~~ 
of r

~jh lc U for the finite element family of matrices.

Mat rix PUR
si ze

49 .61

2 2 5  .58

961 .56

Table 9. Illustra tion of constant processor
utilization ratio .

( 4 2 )



‘l’he results are given .n Table 9; these show a PUR close to .55

for all matrices , and an asymptotic approach to this value for the

l a r g e r  m a t r i c e s .  ( ‘he s m a l l  descrepency i s due to the loop startup

and p ivoting times not included in the above model.

At present , there is no known solution to this problem in the

substitution process. Either one must hope that the processor can

he u t i l i z e d  for  o the r  t a sks  w h i l e  the  1/0 is b u s y ,  or , in some

(few) app lications , multiple substitutions may be carried on

-‘ s i m u l t a n e o u s l y  with the same factorized matrix.

(43)
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3 . V a r i a b l e  l o c a l  s t o r e

L o c a l  s t o r e  is  c o m m o n l y  v a r i a b l e  as a r e s u l t  of a multi-

u se r  env i ronmen t , i.e., a l a r ge  st ore is divided between two

er  more  u s e r s .  I I t h i s  l a r g e  local store is virtual , then

i t  w i l l  be assumed t h a t  t h e  user  is not assessed the costs

of paging or swapping from the system ’s backing store.

Whe n 1/0 is handled by the central processor , the cost

of variable local store is commonly charged according to the

length of time and the amount of store used. Specificall y,

the  cos t  of a p rog ram execu t ion  can be w r i t t e n

cost = a ( C PU t i m e) + a b (local storage) (CPU time)

= a (1 + b (local storage)) (CPU time) (30)

where a is a charging coefficient (dollars/CPU-second)

b is a coefficient (pages 1) that co nv e r ts t h e  s to r a g e

costs to unit CPU costs.

The t o t a l  CPU t ime is c l ea r ly  c N r + d N0~~. The local

storage must have a value 2 Sk to accomodate bo th  the cu r ren t

st r ip an d t h e  re c a l l e d  strip. The cost can then be written

as a func tion of Sk for a full matrix solution wi th large n as

cos t  = a(l + b ( Sp +2 S k ) ) ( ~~~~ 
+ dN 0~ + T0~

)

= ~~~(~~~bS p + 

~k~~ 3(d ~~~~~T )  
+ Sk) (31)

~~~~~ 
+ Sk) ~~2 

+ Sk)

w h e r e  S1) is t h e  f i x e d p r o g r a m  s t o r a g e  and T 0~ is ov e rh ead

t ime no t  a t t r i b u t a b l e  to  e i t h e r  n u m e r i c  or I / O  c o m p u t a t i o n .

A l t h o u g h  t h i s  cost  f u n c t i o n  h a s  a m i n i m u m  a t  Sk = ~~~~~~~~~~~~~~~ t he

S
__I (44)
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minimum will in general be quite broad. The sharpest minimum

occu r s  when  
~~ 

= a 2 or n = 41000 and S k = 50 pages , f o r  b = . 0 1 .

l~ven t h i s  m i n i m u m  is b r o a d ;  the  cost  does not exceed doub le

the  m i n i m u m  v a l u e  for  a~~/ 7  < S~ < 6cz 1 . For more practical

values of n , the local storage costs considerably exceed the

I / O  cos t s , and the  fo rmer  can eas i ly  be eva lua t ed  f rom the

first factor in (31). -

To apply this analysis to a sparse equation system for

which (31) applies , consider again the  f i n i t e  e lement  f a m i l y

of A p p e n d i x  A , solved on the U n i v e r s i t y ’ s s y s t e m .  A summary

of parameters and formulae pertinent to this calculation are

shown in Tab le  10.

Program storage S~ (pa ge s)
Driver with arrays 7.7

Solver  w i t h  I / O  7 . 0
System r ou ti nes 7 .8
I/O buffers 43.0

Tota l  6 5 . 5
LU storage S (Table Al) (l24n- 344)2 ~~
T 0 . 0 sec .
Arithmetic operations (N 01)) 39. S(2~’~)
I/O transfer rate (1/c) 1000 pages/sec .

Arithmetic operation time in 1 .lx l0 6 sec/operation
inner loop (d)

Tab le  10. P a r a m e t e r  summary

For n=5 , a 961 equation system , i t  may be d e t e r m i n e d  t h a t

= 8 2 . 3 , 
~~ 

= 1. 0 9 , y i e l d i n g  a cost  m i n i m u m  at Sk = 9 . 5

pages. The estimated cost is plotted versus Sk in Fi gure 9;

the m i n i m u m  is shown to he q u i t e  broad due to the relat ively

$ (45)
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small cost of local store on this virtual memory system

(e.g., b= .O1 impl ies that when S~ + 2Sk = 100 pages , storage

cos t s  become equa l  to CPU n u m e r i c  computa t ion  c o s t s) .  Several

c o r r e l a t i o n s  of e s t i m a t e d  and ac tual  s o l u t i o n  cos t s  has been

made.  F i g u r e  9 shows a rather large discrepancy due princi-

pally to the use of inner loop timing estimates only, the

failure to include substitution steps in the estimate , and the
S 

assumption that = 0 . Note that Table A4 shows that ,

f o r  ZS k = 13k by tes , approximately .57/3. 7 = .15 of t he

f a c t o r i z a t i o n  t i m e  is unaccounted for . I t  may be t ha t  t h i s

overhead is compensated by the use of asymptotic values for

S in Table 10.

3.
x

x

o measured -
‘-4

2 4 6 8 10 12 14 16 18 20 22 24

Strip storage 
~
5k~ 

- pages

Figure 9. Comparison of measured , calculated cost of virtual
memory numerical solution .

(4 6)
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; . Evaluation

This chapter has been primaril y concerned with modeling

and analysis of components of the equation solver. The de-

tailed timing analysis performed on critical parts such as

arithmetic kernels and I/O routines cannot reasonably be

per~ ormed on every code sequence. Therefore , although

the asymptotic performanc e for large problems may be reliably

predicted from these key components , the small problem

performance cannot; indeed , one does not know for certain

what qualifies as a small problem without analysis of all the

code segments. Fortunately, since the complete equation

solvers have been imp lemented (Chapter 3), it is possible

to make evaluations by comparing run time performance.

One hi gh-level performance measure frequen tl y used fo r

evaluation of processors with complicated p a r a l l e l/ p ip e l i n e

archi tectures executing simple software kernels is the millions

of floating point operations per second (MFLOPS). Plotted

versus problem size , the rate at which the MFLOPS approach

asymptotic values imposed by the speed of processor ari thmetic

units gives a succinct display of overall small problem

performance meaningful to user and algorithm developer

a l i k e .  We propose  to use the same MFLOPS performance as a

comparative measure of complicated scientific packages

executing on a rela tively simple (scalar) architecture.

Fi g u r e  10 shows  t h e  M FLOPS dependence  of f o u r  s p a r s e

equa tion solvers applied to the family of finite element

problems of Appendi x A. The asymptotic values shown are

( 4 7 )

-
~~~~~~~~~~ir~

’- ~~~~~~~~



obtained from the execution mode timings of the innerloop

obtained in Table 4. The MFLOPS are obtained from the

timings of Table A3 and a knowledge of computational com-

plexity. Several comparisons of the plots seem meaning ful.

1. Over the range of n shown , the sca lar version shows

a relatively superior performance over the vector version for

intermediate values (n=3 ,4) where the overhead of the inner

loop is significant. For n=2 , other program overhead tends to

produce equally poor performance for both versions ; for n=5 ,

the larger inner loop startup time of the vector version becomes

less si gnificant and the gap between the two decreases .

2. The large program overhead of the partitioned version

makes this very unattractive for n=2 ,3, but when n=5 the rate

of increase in MFLOPS is large and suggests that this version

should be operating at 50% or more of the asymptotic MFISOPS

value for problems beyond the range of a 1-2 megabyte local

store.

3. The code generation version shows a remarkably fast

climb to the asymptotic value (the vector inner product

execution timing of Table 4 is used) . Unfortunatel y, the

code length did not permit larger values of n to be investigated.

It is planned to extend these revealing characteristics

to larger values of n for the partitioned version , and to

test this version on commercial vector processors. Perhaps

more important , this appears to be a useful measure of the

efficiency of general sparsity algorithms versus more special-

ized full- , hand- , and block-solvers operating from a backing

store. If the general al gorithm can be shown to be as easy

to use (see formulational aids , Chapter 3) and near the

MFLOPS rate of special al gorithms , the usefulness of the

pa rtitioned general solver w i l l  he well established. (43)
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n ( ( 2n~ 2) elements/side)

Figure 10. Floating point operation rate
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(~hanter 3. DESCRIPTION OF A DUAL VECTORIZED GENERAL SPARSE EOIIAT ION
SOLV iNG PACKAGE

A.  I n t r o d u c t i o n

The results of the appendix referenced throug hout Chapter 2

were produced by two general sparse equation solvers. Together

with the (processor-dependent) code generation program of [6] [81

these Fortran language solvers allow the user to solve sparse sytems

of equations ranging from tens to tens of thousands of eqations.

For small systems , Table A3 shows that code generation is several

times faster than other algorithms; when memory size to contain

the code becomes a limitation - perhaps fo r  several hundred

equa t ions  - the m a t r i x  of t en  ha s suf f i c i en t local den sity to

warrant a vectorized solution. As the system size increases to

— several thousand equations the LU storage becomes excessive and

a program with backing store becomes necessary . Since the

ma j o r i t y of  sparse matrices solved on current fast scalar and

vector processors are beyond the size manageable with code , the

latter two approaches appear the most useful.

The dual software package described in this chapter allows

the user to begin with an equation solver contained in local

store and then , as problem size grows , to include a hacking store

with little change to the application program . There is , of

course , some reprogramming of the I/O section of the second solver

necessary for different file systems .

In developing the du a l sparse solver package , several general

guidelines were used.

1) The package should be able to solve efficiently sparse

equations rang ing in density from several elements per column
a
,. (SO)
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(electrical power systems ) to several hundred element s per column

(finite element problems). Since the structures of such matrices

are described by quite different data structures , this assumption

resulted in a distinction being made between the user-supplied

matrix description , and the data structure utilized by the

symbolic and numeric solvers. Thus , any of a variety of structural

descriptions can be entered by the user (see flow chart of Figure 15) ;

these are converted to a common vectorized data structure prior to

symbolic and numeric processing . It is recognized that an additional

storage will be required to describe the structure of block matrices ,

vis-a-vis a “hypermatrix ” [14] [15] [16] representation . However ,

as shown in Table Al , even for relatively small sparse matrices ,

the symbolic storage is far less than the numeric storage -

especially for machines with 16-bit integer format - so that the

additiona l I/O incurred in recalling previous column strips con-

taining both numeric and symbolic imformation is not si gnificant.

2) The processor should have  at least 1-2 megabytes of

local (real or virtual) store . Thus , it is assumed that the

symbolic matrix structure fits in local store and that a full

column (row) of the numeric storage occupies a smal1 fraction of

local store. This assumption rules out a typical min icomputer

system.

3) The package should run efficiently on both scalar and

current vector processors , although it is recognized that per-

formance could be improved in some combinations of matrix structures

and vector architectures by major revision of the symbolic and

numeric al gorithms (e.g., blocked matrices being solved on a pro-

cessor with a high-level vector capability, or very sparse matrices

(51)
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being solved by multi-row factorization [131) . Certain Common

vector instructions are accomodated (e.g., the inner-product

instruction) by supply ing alternative forwar’~ nnrl hac~ substitution

algorithm s .

In this chapter , issues related to the use of the package

are examined , inc lud ing

(1) a simple example of its use , without backing store and

with user vectorization of the structural input data;

(2 )  discussion and examples of aids to simplify the equation

formul at ion and avoid the need for vec tor iza t ion no ted in ( 1)

(3) general flow chart of the program ;

(4)  repre sen tative exam p le involving f i n i te e lemen ts and

us in g back ing store and formulation aids ;

( 5) de tai l ed di scus s ion of a lgorithms and formats used

in the sparse solvers .

(52)
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R. General Program !)escription and Use

1. Program descri ption

The software package is divided into three operationally

distinct parts.

1 ’) VFGES (VEctorized General Equation Solver) , operating

without a hacking store ;

(2) \ r E G E S/ p , which partitions the matrix solution to utilize

backing store , and

(3) UNBLOK , a symbolic preprocessor that accepts a variety

of user descriptions of the matrix structure and produces vector-

i:ed arrays to VEGES or VEGES/P to aid the numerical equation

formu lat ion p rocedure.

The specifications for VEGES and VEGFS/P are given in Table 11 .

It is worth noting VEGES/P requires considerably more program

storage than VEGES , so that the latter should be used when part-

itioning is not required.

2. Example use of VEGES

For the reader unfamiliar with the use of sparse equation

solvers , an elementary example will depict a minimal programming

effort necessary to utilize this software . To distinguish the

symbolic and numeric solution phases , separate main  p rograms

are used for each phase; communication between phases is provided

through a backing store . Since the symbolic phase need be ex-

ecuted only once for a given matrix structure , this separation

insures that program and array storage associated with only the

symbolic phase will not burden the t ime-consuming numeric phase.

(53)
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1. Name: VEct ori :ed General Equation Solver  (VEGES without

partitioning, and  VE (E5/P with p a rt i t i o nin ~i)

2. Purpose: ic perform direct solutio n o f a r b i t r a r i l y —

structured sparse simultaneous linear equations ,

either with or without a backing store (partition-

ing).

3. Language: IBM extended Fortran (see IBM document 6C28- 6515-

10); principal extensions from ANS Fortran are

IMPLICIT , REAL* 8, and INTEGER*2 declarations.

-1- . Operating system : Development and testing performed on

Michigan Terminal System .

5. Availability: Source language programs available from

Professor Calahan on 9-track , 800/1600/

6250 BPI (1600 default), iBM standard labeled

(default) or unlabeled magnetic tape.

6. Program limitations : up to 32768 equations ; this limit can

be changed by altering INTEGER*2

array types to INTEGER*4.

Program storage (bytes) VEGFS: Symbolic - 5 7 1 8

Num er ic - 3976

VEGES/P: Symbolic - 18250

Numeric - 15300

I/O management routines - 12456

Table 11. Program specifications.

(54)
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The example solved by the program of Table 12 is

1. 2. 1-. x1 8.

0. 5. 2. x2 = 16.

( 3 2 )
2. 0 5-. x3 17.

wh ere [x 1 x 2 x 3] [1 2 3] is to be found using (l ,3),(2,2)

(3 ,1) as pivot positions . Beg inn ing with the column-ordered

vec tor iz ed matr ix stru cture ( recal l Table 2)

IA: -l ,-3 ,l ,2 ,l ,3

JA: 1 ,3,5,7

and the pivot positions

IPC:  3,2 ,1 IPR:  1,2 ,3.

first the order of IPR is inverted (IPRI(IPR(J))= J and the

symbolic processor VMSP produces a set of seven arrays passed

to the numeric phase. In the numeric solution , thes e are

combin ed wi th the column-ord ered ma trix and righ t -hand side

A: 1. , 2.  , 2.  , 5. , l . ,2. ,5.

B: 8.,l6. ,l7.

in VMNP and VMBPC to produce the solution. The flow chart is

shown in Figure 11.

I t should  be no ted tha t , although the example depicts

column-order ed st ruc tur e, row ordering can be accomodated by

using subroutine VMBPR for the substitution steps . The symbolic

and num er ic da ta would have the row -ordered form

I A :  l ,3,2 ,3,- l ,-3 ,

T A :  1, 3 , 5 , 7 ,

I P R :  3 ,2 ,1 , IPC:  1,2 ,3,
(

~-\: I . , 2 . , l .  , 5 . , 2 . , 2 . , 5.
S

( 5 5)
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IA ,•JA (vectorized) A matrix structure

IPRT ,IPC V~iVot order

~~~
MS1j 

Symbolic phase

IVA L and U vectorized
struc ture , written

IU ,JU ,IVIJ to backing store

IL ,JL ,IVL

A ~~ f~~M~Tl -

_______ 
Numeric factorization

L ,U..DI Factored matrix , diagonal

B t~ 

Forward and back

VMBPR j  substitution
‘

~~~~1B Solution vector

Figure 11. Flow chart of non partitioned vectorized 
sparse matrix

• solver.
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C. Simplified Equation Formulation

1. Introduction

From a formal viewpoint , a general sparse equation solver

can reasonably require that the matrix be stored in standard

order (e.g., row or column) in local or backing store before

the soiution is initiated. The burden of formulating the

equations in this order is left with the user , so this rationale

goes , because the variety of equation-formulation procedures

is simply too large to accornodate in a general way . Unfortunately.

this standard-ordering requirement , together with the unavoidable

necessity of describing the sparsity structure , has made the

conversion from full- and band-oriented methods to general-

spar ci-t y methods worthwhile only for large problem-oriented

analysis/desi gn packages where the user is isolated from

the demands of the sparse equation solver.

Several aids to the equation formulation have been produced

to avoid this column-ordering requirement on the user. Their

use is illustrated in the following examples . In this development ,

a distinction will be made between a scalar structure , where

in d iv i dual  e lemen ts of the ma tr ix  are  descr ibed  b y the i r (row ,

colum n) po sit ion , and a vector structure , where subma tri ces

(blocks) are ind i ca ted by several  descr i ptors .

2. Scaiar case: example

To exemp l ify a typical conversion from a full- (or hand-)

matrix solution to a general spars i tv solution using the formu-

lation aids , consider tile elementary example of Fi gure 12

(the reader is assumed to he familiar w i t h  t he  e x a m p l e  of Table

2). The key steps in this process are the fol lc~win g.
a ( 58 )
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1) The user must supply explicit structural data , but

t h e  St ruc ture may he in any order and in a var i e t v  of forms

the scalar ( i , i ) form is illustrated in F i g u r e  12 .  ‘lh is

structure is most easily produced by creating a new version

of the full matrix formulation , but replacing each numerical

formulation step with a symbolic formulation step (a four-

step formulation is shown) ; this symbolic data (array NA) is

preprocessed in the symbolic phase of Figure 12.

2) Fecause the sparse solver requires column (row)

order ing of num er ical da ta , but the equations in general may

be formulated in any order , a mapp ing array MAP is generated

by subrou tin e IJNBLOK , wi th an e lemen t f or each nume ri c

formulation step , so that at the ith formulation step ,

A(MAP(I)) is calculated by the user. Alternatively, if the

numeric values are stored in an array B (viz , B(l) = 3.,

B ( 2 )  = 7., etc), the A matrix array is formed by

DO 1 J=l ,4

1 A(MAP(J)) A (MAP(J))~ B(J) (3la)

No te that the mapping array increases the storage between

25% and 100% , depend ing  on the word sizes of symbolic and

numeric data.

3) Duplicate positions are often created in the determina-

tion of array NA , as when several numeric values must be added

to produce a sing le matrix position. This duplication results

from the creation of a matrix position associated with several

physical components. As illustrated in Figure 12 , this sit-

uation is readily handled with the MAP array, wher e MAP ( 2 ) =

M\P(4) = 3.
(60)
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3. Scalar case: algorith m

In add it ion to t h e  s t o r a g e  i n t r o d u c e d  by t i l e  MAP a r r a y ,

another critical question is the computational complexity

of the MAt1 generation. This proceeds immediately from a

study of the algorithm .

Let a user-supplied n x n matrix structural and numerical

description be described by

(row,column ) position = (i k,jk) k 1 ,2 ,..

bk 1 )

To arrange in column order , define

= ik + (n+l)(j~~-l)

where duplicate values of are allowed. If the values of

are sorted in ascending order and a permutation vector

m a i n t a i n e d  so t h a t

9* 2. r = l , 2 , 3 , . . . k - l
-

k = 2 ,...m

then the sequence

‘~l ~

is a column-ordered list of numerical values , with possible

duplication of positions being adjacent in this list.

Now assume that 2. = 9~ impl ies tha t b and bT
~r 1’r+l ~r ~r+l

are to be added to compose a sparse matrix position. Define

t he  set

( q }  = {r : 1 < r ~ m , 9. ~ 9* } ( 3 2 )
~r ~r+l

h ere , 
~~ 

k=l ,2 ,. . ~c , points to a set of unduplicated values

(61)
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of . 1’he c o l u m n - o r d e r e d  mat rix p o s i t  i on s  are  t h e n  g i V e n

w i t h o u t  d u p l i c a t i o n , by

3 k 1~ / ( n + l ) 1  + 1
Pq~

= - 

~~~~~~~~ 
k=l ,2,.. .s

The mapping array MAP is generated by defining

w = 1p1

w = w  £ = 9 *  r=2 , . . . m
~r ~r - l  ~ r ~ r - 1

w + 1 9* ~ 9.
~ r - l  ~ r ~ r - l  ( 3 3 )

Then the packed sparse array A is calculated columnWiSe from

c ~~ C + b  k= l , 2 , . . . m
W
k 

W
k 

k

Thus the set wk 
performs the function of the MAP array.

The complexity of the above computations is

(1) 0(ml og 2m) for  p e r f o r m in g the sort , and

( )  0 (m) ~or performing the scans of (32) and (33~~.

The so rt ea si ly domina tes the compu ta ti on. Since m 0(n)

for  finite element grids , this complexity is 0(nlo~n).

4.  Vector case: introduction

Large  sparse  equa t i ons  are usua l ly  mos t  e a s i l y  f o r m u l a t e d

in b locks , each relating clusters of equations and variables.

Thes e blocked subma tr ices mus t then be a r r a n ged in column

order  w i t h i n  the  b l ock , and t h e n  these  colunnwise representations

inserted into the  overall column-ordered matr ix structure.

Th is unhiocking nrocess - t h e  p r i n I a r ’,~ func t ion of subrou ti ne

U N BLOK - is comp licated by the following factors.

(62)
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1) B l o ck s  may ’ be gene i.a t ed i n  a n y  o r Ue r

2) Blocks may in general overlap i n  e i t h e r  o r  b o t h

dimensio ns (however , see [201 for methods of eliminating

o v e r l a p  at  a cos t  in matrix size) .

3) B l o c k s  may have an internal sparsity structure worth

preserving , e.g., dia gona l , tridiagona l , etc.

4) For very large matrices , the blocks may not be con-

tam able in local store , but must occasionally be written to

backing store.

To reduce user concern for these issues , the preprocessing

subroutine IJNBLOK accepts a hi gh l evel des c r iption of the

block structure , and , similar to the scalar case of Fi gure 12 ,

produces both (a) a vectorized matrix symbolic description for

VMSP , and (b) a vectorized mapp ing array to assist equation

f o r m u l a t i o n .

Since the primary use of the blocking feature is expected

to be in the solution of finite element problems , a simplified

format has been provided in this case. Entering onl y the

node numbers of the elemen t Ie5ults in the necessary vectorized

matrix description and formulation map, assuming all nodes in

the finite element are coupled in the element matrix description.

Boundary conditions are also handled at this level.

A summary of scalar and vector formats acceptable to

UNBLOK is given in Table 13.

Unpartitioned form

Temporarily ignoring the problem of incorporating a backing

store when the matrix cannot reside in local store , two example s

will he studied to illustrate the correspondence between

sym bo l ic and numer i c  arr ay s and th ei r us e .
(63)
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The first example of Figure 13 illustrates the processing

of a variety of overlapping block st ruc ture s . The user

supplies a symbolic array NA to the symbolic preprocessor

UNBLOK and a num er ic array to the equa tion solver .  Th e

latter array must be column ordered by the user within each

block , regardless of the block structure. Thus , a finite

element must be -formed in column order , usually a minor restriction.

Structural  Descri p t ion  Format

Scalar in (i,j) position -j
-1

Dense vector in column j -j
from row i1 throug h row i2

i -I

Finite element connecting
nodes k1,k2,. ~•km 

k2

and boundary conditions 
U

km1
ti

t
111

2

I Dense (q=l) 
‘

1 0
b l o c k  he t w c -en

Diagonal (q=2) 
1 po sitions (i 11j ~~ ,) ~

Tridiagonal (q=3)J and (i7,j 2)
r

12
j 2

• Table 1 3. Format of NA array input to t i N B L O k
a s s u m i n g  c o l u m n - o r d e r in g  ( u s i n g  VM BPC ,
:MBPC)

The f n r m u l a t i o n  p rocess  m a y  he vectorized with a potential

savings in storage. Rather than generating a single

( 6 4 )
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array !‘IAP, one car. produce both (a) MA P (  I )  which points to

* the beginning of a column-ordered vector in the packed matrix

array A , and (b) LEN(T) which gives the length of this vector.

The A array is then loaded from the B array in this manner.

N=O
DO 1 J= 1 , KT
IVl=MA P (J)

1V 2=L I iN (J )+ I V1-l

DO 1 I = I V l , 1V2
N=N+l

1 A ( I ) = A ( I ) + B ( N )  ( 3 4 )

As in the scalar case , (Eq. (31a)), the array B need not be

formed in its entirety before transfer to A. For example ,

B need s t o r e  o n ly  t h e  numerical components of a single block

or finite element; so long as the J and N counters of ( 3 4 )  a r e

maintained , t h e  i n n e r l o o p  can he entered at any time.

The choice of using scalar or vec tor representation of

(31a) or (34) depends on the average vector length (L~~~ ) of

the  c o m p on e n t s  of t h e  B a r r a y .  S ince  t h i s  Lave w i l l  he less

t h a n  t h e  L f o r  the completed matrix which in - - l r n  w i l l  be

less  t h a n  t h e  Lave of t r i a n g u l a r  f a c t o r s  L and U due to  f i l l ,

the scalar mapping procedure of (31a) is expected to he pre-

ferred in the majority of cases .

The second example of Fi gure 14 illustrates (a) the sin-

• pli city of using the high level tin ite element feature , and

(h) a simplified method of incorporating boundary conditions.

In this examp le , all elements are assumed triangular with two

unknowns/node. The rela ted matrix structure is shown by x ’s,

(65 )
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I I

8. 6. 0 .  7.  
+ ~ ~~~• ~~~. ‘ 3.’ 

+ ~~~~ -

0. 0. 0. 0. 0. 7. 4 . - 4 .  3. 0. ’ 3. 8. ;

7 .  -2. 0. 6. 0. 0. 0. 1~ 0. 4. 0. 0.

NA (NB) B(NV) MA P ( KT ) LEN (KT) JA(NP1 ) IA(~JA 1N Pl) -1

F • ( 1  5. 1 2 1 1m i te - 8 4 1 3 4e1ement~ ~ 7. 5 2 1
-4 2. 8 1 7 4Co lurin 9 1vector - -2. l~ 3
0 3 Z1~~~ 

-

Iridiaqonal ~ 
- 

- 
/ 1 2 4

- 1 v - . / ~ 3b lock 1 
- 

2 . - UL. - - - 
2

3 3. - 1 2
3 4 .  2

‘ 0 1. 
-

i 1. /~~~~~ 
1

Full 1 6. / / ~
- 

- 
1

block 1 . 
, 

//12 1

~: /
‘ 

~//~ ______

Diagonal 3 

- 

/

~~~~
f

t~~~~~~d ~~~~te descri ption to
block i T

• (see Eq. 3- -I ) VMSP , ZMS P

Sca la r  ~

Row [3 ~~:‘~vector  ~ 3 3. 1
3 8.

- 4  
4

• 
- user  t il er column - I ou tput from UNBLOK

input ‘ ordered numer- 1
to U NBL OK ical array

Figure 13. Example of column-orde red matrix preprocessing of structural
d a t a .
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eP a r a t 0r  f or  t hr e e  p a r t it i o n s

( a )  T r i a n c~u1a r fini te element structure

x x  x x  x x  x x
X X X X X X X X NA: 1 2 3 1 3 4 2 3 5 3 4 5
x x  x x  x x  x x
x x  x x  x x  x x

(h) Matrix and NA array without boundaryx x x x X X ~ ~ X conditions 
-

x x  x x  x x  x x  x x

x x  x x  x x  x x
x x  x x  x x  x x

x x  x x  x x  x x
x x  x x  x x  x x

N A :  1 2 . • . see above . . . 4 5 2 9

x x  x x  x x  x x  p
x

x x  x x  x x  x x
x x  x x  x x  x x

c ) Part i t oned m at r I x rid NAX X X X X X X X X X ;ir r ;i y w i t h  Jwund ;vry
X X X X X X X X X X conditions on v;i t- i a lilcs

2 , 7 , 9.
Y x

x x  x x  x x  x x  ~)3

x
x x  x x  x x  x x

F u~u r e  1 1 . kxamp le of row-order ed partitioned finite elemen t —

problem and matrix.

(67 )
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and the \ -\  arraY is also ~ ive n . If the boundar y condi t i o n s

are of the Dir ich let tvne on var iahles 2 , 7 , and 9, these  num-

be r s  can simpl y be appended to the NA array as shown. If row-

o r d e r i n g  is  used  (V M BPR )  , subrou tine UNBLOK will then generate

appropria te vec tor descriptors to numerical lv zero elements in

the rows associated with the boundary c o n d i t i o n  v a r i a b l e s .

-\ un i t - va 1 ned din gona 1 w ii I t hen lot-ce t he va r lab I e to t he

rig ht hand  side value . An example will he g iven shortly.

P a r t i t i o n e d  f o r m

When the A array cannot he kept in local store , it m u s t

he formed in partitions. If the matrix is row-ordered as

required for incorporation of boundary conditions , the

partitions must also be a long  row b o u n d a r i e s , as i l l u st ra ted

by the three partitions (Pl-P2-P3) of Figure 14.

Each partition is formed in a buffer re gion of local store;

when  a partition is completely formed , it is written out to

b a c k i n g  store , and the buffer reg ion is overwritten by the

next partition. Continuing with the example , assume that

each finite element is formulated before beg inning the next.

Then the coupling of elements sharing nodes within the element

array requires that at least one partition he resident in

loc al store , representing the coupling of past and future

- :irt i ti Lns . Thus , P1 representing node 1 of Fi gure 14 can-

n o t  he w r i t t e n  to  h a c k i n g  store until finite elements a and b

• h a v e  been formed . Then the p~~~~~or 2- 3- 4 isolates succeeding

e l e m e n t s f r o m  node 1, so that P1 can he written to free space

f o r  P3 .  
4

A subtlety in this buffering scheme is introduced by

d i s t i n g u i s h i n g  t h e  e x t e n t  of c o n c u r r e n c~ by t h e  p r o c e s s o r  in

(68)
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t h e  f o r m u l a t i o n  and I / O  processing. If the central processor

p er t or m s  t h e  1/ 0 as w e l l  as t h e  numerical equation formul ation ,

t hen  o n l y  two b u f f e r  r e g i o n s  need be d e f i n e d .  Fo r  e x a m p le ,

in  the 5-partition problem of Fi gure 19 , to  be d i s c u s s e d  in

de t a i l  la t er , the form-flat ion- I/O sequence with two b u f f e r s

would proc eed as follows.

Set up elements a1 
- a 8 in buff ers 1 and 2

Write buffer I (cols. 1-10)
Set up elements b 1 

- b 8 in buffers 2 and 1
Write buffer 2 (cols. 11-20)
Set up elements c1 

- C
8 

in buffers I and 2
Write buffer 1 (cols. 21-30)
Set up elements d1 

- d8 in buffer s  2 and 1
Write buffers 2 and 1 (col. 31-46)

On the ot 1-er hanli , if t ,e 1 , 0  is handled by  a separate nro-

cessor and a buffer reg ion cannot he simultaneously filled

and d r a i n e d , three buffers must he used. The e x a m p l e  would

now proceed as follows.

Set up elements a
1 

- a8 in buf fe rs  1 and 2
Set up elements b1 

- b8 in buffers 2 and 3; write buffer 1
Set up elements c1 

- C
8 

in b u f f e r s 3 and 1; write buffer 2
Set up elements d1 

- d8 in buffers 1 and 2; write buffer 3
Write buffers 1 and 2.

5. Vector Case: algorithm

The subroutine UNBLOK operates on user-supp lied block

descri ntions as follows . Since the blocks produced in the

vector case have an internal sparsitv struc ture , t h e  f i r s t

step in column-orde r in g the entire matrix is to column-order

each block. This is carried out “on the fly ” , i.e., as

(69)
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cacti block is recognized in the us er - d e s c r i p t i o n , an e x p a n d ed

vec tor descri p t ion  — he ginn ru g and c:d irig row n u m b e r s  of eac h

dense co lurn n segment - is gene r a t  L’d in co I lion order for the

block. In the case of a finite element , the entire submatrix

is column-ordered , irrespective of the block structure.

The arrangement of these vector s into a column-order for

the entire m atrix has two steps.

(1) An array of beg inning row numbers for’ each vector

is saved from the above process. Together ~ith the correspond-

ing column number , these “scalar ” de sc ription s of each vect or

starting position are sorted as de~— c rih e d in the scalar case.

(2) The column-ordered list of startin g vector positio ns

is  scanned  a column at a time . For e a c h  co -ann , star t ing and

ending row positions of vector s are noted , ;mn i overlapping

vectors are combined to form the final compacted vectorized

m a t r i x  s t r u c tu r e .

The sorting is a cain the dominant computational effort .

If there are m 1 blocks w ith  an ~;ver age of rn , c o l u m n s / b l o c k ,

then the complexit y is Oim 1m 2 log 2 mm 1 m ,)).

D. Program Flow Charts

Having illustrated the use of the unpartitioned solver

VEGES and the symbolic preprocessor 1JNBLOK , we may now view

the flow chart of the complete system package with some under-

standing before considering in detail the more complicat ed

partitioned version in VIIGFS /P. P a r t i c u l a r l y  n o t c - wo r t h v  in

Fi gure 15 is the lR~i Thfl /5~ O assembly language version of the

• (70)
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bloc k.

( .7k )

- - - “ - — ‘ - - ..r ~ 

- - - ‘-- -- - - _ - ---



2). The key steps in this process are the following.

(58)
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E.  Details of the Partit ioned Solution

1. Introduction

The implementation of a hacking store version of a general

equation solver necessitates a fundamental assumption concern-

ing the si:e of local store versus the size of the system of

equations. In contrast to specialized full- , band- , and

block-solvers where the structure is given , sparse solvers

must have ready access to both numerical and structural data;

this implies that a decision must he made on whether to main-

tain either or both completel y in local store or whether onl y

a local descri ption - adequate for a local computational

sequence - should be maintained , the rest residing on hackin g

store. \ similar consideration is involved in the equation

formulation stage , i - e • , whether the matrix (and the MAP arra y

if UNBLOK is used) is formulated and written to hacking store

in narts . In general , a tradeoff must be made between flex-

ibilitv in use ~hen all ;~~~~~~ - mnt i l I v  large arra ys are p ar ti tion—

able , and user convenien ~m ~h a -i ll arrays are resident

in local store.

In V L G ES / P , i t  is ass~ ned i t  :n rra\~ associated with the

symbolic solut i c - n i  phase a r u  i n  local store hut all other large

arrays ire in h acking ~~ore . Table 14 details this assum pt ion

by giving the residenc y status of A , L , 11 , etc. in the form-

ulation and solution stages. Ihe justification for this choice

is that the vectori zed s t ruc tu r a l  a r r a y s  a r e  likely to require

(72)
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at least an o i-dc r o I mn agn 1 t ude 1 es s st o rage t h an  nume r c i i i - ra vs

residenc y

array residency array numerical stru ctu ra~j
A 13

s t ru c t u i-al L B B -

n u m e r  ical B L , U B *

\ I A P , L F N  B X L -

*L during symbolic phase

(a~ ~ornrtulat jon (b) Solution

Ti h Ic 14 . l oc a t ion of a rra y s in (J N I3 IOK and VFGNS/P; I. — local stor e
B — backin g store.

for problem s necessitating a b a c k i n g  s t o r e  (til e ratio bein g

1n for L and U in the finite clement problem class of Appendix

t a b l e  A l ) .

2. Flow chart of UNBLOK symbolic preprocessor

The U N B L O K  s u b r o u t i n e  originally cited in Fi gure 12 , has

the ability to partition the MAP and LEN arrays , as indicated

in Table 14 , writing these to a backing store one partition at

a t ime. Thus , these formulational arrays do not seriousl y affect

the storage requirements for the symbolic phase of the solution.

Other noteworth y features of UNBLOK are the ability (a) to

produce either scalar or vector mapping arrays (see Eqs. (3la)

and (34)), and (b) to identif y rows which are to he zeroed in

the manner of Figure l4c , to handle boundary conditions .

3. Flow chart of ABLOK numerical oreprocessor

ihe numeric formulation phase is complicated somewhat

hr p a r t i t i o n i n g  of the formulation step , since the MAP and

LF N a r r a y s  a r e  on backing store (from UNBLOK above) ; then

r e t r i e v a l  m u s t  be c o o r d i n a t e d  w i t h  t h e  formulation of components

of A.

( 7 3 )
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times IT ile s of Backing Store

- 
V e - t o r i : r - d s y m b o l  ic

m a t r i x  description , p ivot order
Fr o m  u se r  or f rom lI u R L O K  c\

1 -— —~ __________

is 
-— 

~~~~ on h o I i c  Pr o c e s s o r  p r e p a r e s  LIf

User specifies either
a. initial columns of partitions

-- b. maximum partition storage
P (bytes)

I Partition-related information
I printed ; if interactive , re-

partitioning possible. C

— — _~~~Partitioned7
I 

—
~~~~

- — 
/ 

symbolic A

T ~~~~~~~~partitioned symbolic A and LU 
~

~~~~~~~rtiti~~~~~/ I symbolic LU
or ASLOK forms A numeric values ‘ _____________

ci to r  of f i l e  p o i n t e r s  fo rmed  /
into each column of the  n u m e r i c  

~~~~~~~~ 1~~~~ e r i c_ AA file. B numeric values formed
and written. E / 

‘-
~)~ —

__________ ____________________ / Numeric A

k / , J file
/ — pointers

Read symbolic , numeric A; reorder A , I?’ I I Numeric B
insert zero-valued fill positions in L’ ,1numeric and write reordered , R _____________

expanded A. F )‘— , -I ~ I Partitioned
,
~~~— i initial

— T 1 —1 numeric LU
F ,‘ / ,-

Perform numeric factorization on
reordered partitioned matrix G ~— _____________

7 Part it io~~~1
~ — -ymbo lic and

— — — 
I 

numer i c  L
N - ____________________p 

~~~I —
Perform forward and back

TFBS substitution of partitioned 
_____________

row- or column-ordered matrix H 
~~ 

- -Partitioned
t I ~‘ ymboli c and— —  — I 0 -numeric U

Solution vector

Fi gure 18. Flow chart of partitioned solution.
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This coordination can be generalized provided that the

com ponents of A are also on a backing store in the order

consis tant with MAP and LEN. This is performed by subroutine

ABLOK with flow char t g iven  in Fi gure 17. Note that use of

this rout inc prec ludes formulat ion of the mat rix “on - t h e  - f l y ”

f r o m  i t s  c o m p o n e n t s , and requires an a d d i t i o n a l  r e a d/ w r i t e

cycle in the equa tion formulation. This price for generality

is expected to be small for fast scalar processors but could

be si gnificant for vector processors. At a minimum , ABLOK

provides an example of the coordination process for the user

with an alterna te strategy.

4. Flow chart of symbolic , numeric solution

The symbolic and numeric formulational preprocessors leave

the matrix structure and values on a backing store , respectivel y .

The symbolic and numeric solution then proceeds in five major

steps.

(1) The columns which initiate the partitions are selected.

These column breaks are determined in an addition to the symbolic

p r o c e s s i n g  phase by user specification of either (a) column

n u m b e r s , t hus  a c c e p t i n g  w h a t e v e r  p a r t i t i o n  s t o r a g e  r e q u i r e m e n t s

that result , or (h) maximum stri p storage size , permitting the

column breaks to be selected by an internal algorithm . This

interactive partitioning step is depicted in the block diagram

• of Figure 18 and will be illustrated s h o r t l y .

(2) The matrix A is read , r e o r d e r e d , and writ ten to hack-

• ing store with zero-valued positions of I. and II inserted .

(3) The 1. and Ii are formed in column-ordered strips , each

stri p be ing written to hacking store on completion and recalled

~hcn nece ssary to form another column strip.

( 77 )
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.
~ I t h e  st  ~

. r~s o I Ii ì s t I, and then II are rec:t I I ed i ii  seo liletict -

to c a r r ~- out the forward and hacL substitut i o n steps . Thes e’

steps (F-Il ) are S IIOWfl in  the flow chart of Fi gure 16 , together

w i th the specific reads and writes to backing store of both

num eric and symbolic information (the times given are referenced

in Appendix table A4) .

S. Example of partitioned solution of finite element prob lem

The finite element grid of Figure 19 presents a sufficientl y

complicated problem to illustrate the major features of VEGES/P

and the relative simplicity of solving this large class of

application problems .

Separator 6-8-10 11-13-15 16-18-20

Initial column 1 11 21 31 41
(2 var./node) I I

I I I I

I 
I I I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

____

Fi gure 19. Finite element array and partitions for UNBLOK .
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The symbolic data presented to UNBLOK consists of

p r i n c ipally the finite element node numbers , the b o u n d a r y

v a r i a b l e  number s , and partitio ning information for both the

variable nurdbers and the finite element node number list. The

precise data requirement is shown in Table 15. Note that these

N , the s ize  of the m a t r i x  -

IVE C - 0 for  s ca l a r  f o r m u l a t ion
- 1 for vector formulation

NU MBUF , the  number of b u f f e r s
NPART , the number  of pa r t i t i o n s
NBC , the number  of bounda ry  c o n d i t i o n s
NVAR , the nu mber of v a r i a b l e s / n o d e
NNODE , the number  of nodes / e l emen t

both in CO M MO N / FEL /
NA(NNODE *NVAR* (no . of elements )+NBC)

l is t  of e l ement  node number s  and
boundary condi tions

IPART(NPART+l) , b e g i n n i n g  column ( r o w )
numbers  of each par t i t ion

IXP (NPART+l), poin ter into NA indi c atin g

beginning of new parti tion

‘Fable 15. List of input data to IJNBLOK.

partitions pertain only to the equation formulation step . lii

this example , this data is furnished by DATA statements.

As the flow chart for the example shows (Figure 20) , the

symbolic phase can be executed throug h ZMSP (the preparation

of the LU map ) with this minimal information. The partitioning

of the matrix solution itself is next carried out interacti vely .

The interaction is illustrated in Figure 21 , where two partitions

are examined - one based on a maximum buffer size , and one on

specific column breaks (which happens to be identical to the

(79 )
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column breaks specified in the formulation stage in this case).

The choice of a partition results in the writing of the L and

U maps as well as the presentation of certain critical dimen-

sioning information for the numeric solution phase.

The finite element is evaluated and written to backing

store in the same order as presented in array NA. These

are retrieved together with the MAP and LEN arrays in ABLOK ,

w h i c h  then writes the partitioned A matrix to a backing store.

— The remainder of the solution follows in the manner of Figure 18 .

The main programs for the symbolic and numeric solution

phases are given in Appendix C . The reader will note that in

the numeric phase the user need supply only the subroutine

NF IN I for evaluating the finite element matrix and the right

hand side vector.

(80)

~ 

‘
~~~~~~~~~~~~

-
~~~~~~~~~~~~~~~~~~~~~~~~

-
~~~~~~~~~~~~~~ - - T:T~~~~T 

- -- —



— ~~~~~~~ - — — - —- -- 
~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

r C

n n n i i ’ i - ’ ’ ’ ’- 1 ’  p ro i n l - - r

~~~ ‘~~ 
‘ 1

• 

L~~~~~~~~~~~~~~
Li 

t i l t  A I i U f ! i i  d ,e,is,iin ]

- t o e .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ iy ~~ n i iJ

flit ii~~~~~ p r ~~~~~~~

~~~~~~~~~~~~~~ n p

Ia )  S t ’ :I’o Iii \ I t i n n n  i’ rop rJJ .] m u  n i - t n - s  a l l  n l i uenn u i on ing  for p o l i -
te  U N I n I n ) K , :\!S) ’ _ :In!ii P1 inn , ! i 5<PO _

NI IN !  to n - r i t e  r i co ,
u n i t e  n I n n n - n n t -  o n ,

n i -p i_ -nc np the  numcr i c - n -- pu at  on
L _ _~_ _±m ’ t i n ,  t In i S e~~ n] - I e -

P l C - i I u n , , , u l ~ i t n -  -P
C O I n - i n I c - - f l u  i t  - - u l n - - i e n i n - .

- I IC ~i n  j ’ p i t ] m i  ~ f rom
I h i p  I I A n n u m - r p ‘Iii t r  i x  1

Inn n t t ~ - ni  One row it a t i m e  on
I I  I - i I n_ I_ n u n i t  C C  tO each

row and t ine r i p i n t  hind u n t i e
i i i  w r i t t e n  inn I I I I I\ ! I

P i l l  :pNl-  n i t  ,u-r fn ’ r r i n n n r p n - r n c  I
ii ‘ ‘ I i , r n - - i~l i  nt, I ‘n i - i l  -

L
t, I I  - I ‘ N  I n , m ~I I , - - I I  and

I I I n p I - n , , ! I - i n n - - t ] o n , C  on
1. 1 P P I I i n n _ I  I i  P 1 , 1  — r i o - C t  n c n — l

- i i i  : ‘ IS Ip  I n - - e r n , n  rn f o r w a r d
O t t O  ‘ i _ i d  ~ , , h - ; t m I n t  i n n  u s i n g
h i ll , I l i l i N I l  i n , ! I In I INIT anil
r e t u r n i ng  the s o l u t i on V e c t o r .

l i- n n d 1~~t ~~~ v e c t
~~u i  

— ( i t ) PinI e r i c  It i n n  ‘ n - i - t i n  InC lode, o i l  d i n e n s n - ’ n u i n g  for c a l  I- -
‘il - iln I ni _ ‘ItNi’ and - 

Fi gure 20. Flow charts of example finite element solution program
of Append ix  C.

(81)

- 

-~~~~ ~~~~~~~~~~~~~~~~ ~~~

‘

~~

‘ T1



r 
- 

__________
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Ir- .n , Io_ ~ •~~~~~ 0~ ii ~ i~ i$v, I1ib  O~— a. l~~ ia 2 - i a 7- *sink* t—2
I~ ‘ t i L l  h i - I t  ~- i

DIME N’TIOtI  ~~( 24 8 )  -\‘a lue returned from UNBI O K for A numeric b u f f e r  for A I4i .OK .
— 

ZBk~~A ln E 8 I E h  MAX A I i F 4 A Y  SIOI IA GE ( I ’ Y T E S )
24-54 . Sy mbol i c rar t i t i o n i n g  r o u t i n e  :sRl~N K p e! -o it s e x a m i n l t i o n  of

- p a r t i t i o n i n g  s t r a t e g i e s  and t h e i r  e f f e c t s  on numeric buffer

• storage and i/O  r e q u i r e m e n t s .
- - t ’ LCn t, L ;u  CO Lt - t I N I. ST InT  818 L SIZE $18 IX I’ L FF

1 1 4~~8 12 :’4 Partit i oning c a n  be s~ n e c i f i e t i  by either 01 two met i~ods :
1-I 3;’o i : t - i ( 1 )  by e n t e r i n g  a max i mum a r r a y  s t o r o 1 c f i g u r e  which

3 1 3/ 2 1192 d e t e r m i n e s  column break s by l i m I t i n g  the total
4 31 2 392 1184 buff er storage to the g i v e n  number (this does not

41 4 96 776 include other required a ’- ’a) -x 0f le ngth N).
(2) by entering s p e c i f i c  column b r e a k s .

I U F l E h  si P’ , - IL CNS Y UNITS The choi ce is con trolled by e n d - o f - f i l e  entry by user
l B I ~UFF d I d
l S k 0 f F  l : f l - t  L ST R T ’  g i v e s  number of f i rst L block needed in Lc
a n ’ Tact or iz a t ion of th i s block.

4o8
M i l l  I. s;:r is the size in “Il.ENS Y u ni ts ’ (18M 36 0 ,370 ,

— k e ’ I s  AJ.I~AiTr 4TUV / 6~ ha lfwor d s) of L buffer containing
W R I T E  12280 symbolic and numeric information. Since previous L
REA I1 17578 bl ocks are  needed for factor i zation this number is

critical to the amount of 1/0 done in the numeric
ZBR EAs : 01, e IC O F ’ = N O ) rout ines.
N

?-IIN IXBUF F is the s i z e  in ILENS Y units of the major
ZIiREAK: E N 1 F P  N UMI E R OF BLOCKS symbo lic and numeric buffer required for this partition.
5.

B U F F E R  S I Z E S  are presented for dimensioning purposes in
ZBREAIs E NTER STARTING COLU INS FOR BLOcKS, 10 PER LINE the numeric main progra m; I /O gives a Count of al l read
1 ,11 2 1 ,3 1 ,4 1 ,  and w r i t e  operations.

BLOCK LOW COLUMN 1. STRI $18 I. SIZ E $18 IXB UFF
1 1 384 960

2 11 1 416 1232
3 21 2 416 1232 •ZBg~AK headers consider th e ma trix to be colum n ordered ;
5 41 4 96 776 

for row ordering exchange “i.r for “L” an d “row ’ for “column .”

BUFFER SIZES - ILENSY UNITS
I B B U~ F 1192
IX? U F~ 1232
6 72
Z$B F 416

L u  - I’YTES
W R I T E  12272
READ 15890

i B S E N ’  ~~ n i E O F — N O )

SuGhi L l i t ,  [QUIv ALENC ING:
( 6 ,11 - uh F)  Equ iva lenc i ng A s suggested on the b a si s that the A and
Ill’ - i F . I I EuiFF( IBBU FF arrays mu st be kept sep arate but can over la p 1XR U F F.

IFX t I ‘ i  ~ i r ’ ,gMjP, A TEli
I - . - + r r’ i n’ I-:lit, 0’- - im 1~~— ia 7 3 —ri. 4- --i h 5—— nb 6 — ,ja T o — i l  10 —i u t~ 2CEXEC i 1 1 IIEGIMS

C SOL N hit, Numeric .exe cut j o n is non- in terac t iv e  th -
1.OI’o O from the (in this case row ~~~~~~~~~~~~~~~~~~~~~~~~~

—0.:- : -~~~ - - O j  - ‘I I O T O d E — O j  — 2 . 2 1 4 0  — 2 . 2 1 4 0  0.75874
0. NA / 4  -1.4452 —1. 4 -152 1.5272 1,5272

p —2.6924 —2 .6924 — 1.445 2 — 1 ,4452 —2.7 :139
— 2 . 7339 -2.2140 — 2.2140 —2.6924 ~2 .6124
1.52)1 1.5272 3.5682 3.5682 0.75074

0.75874 2.0305 2.0305 —0.10502E—0 1 —0.10502E—01
1.0000 4.0754 1.0000 1.1254 1.0000
1.0000

•EXECUTIO N TERMINATED
a

Figure 21. Run of s y m b o l i c  and numeric program of Annendix C.
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F . Fortran implemetation (VEGES)

I . Symbo lic pro cessing

A F o r t r a n  i m p l e m e n t a t i o n  of these vector methods can he viewed

in three distinct steps (see Fi g.ll). Given the symbolic map of

A in IA and JA , the symbolic processing rou t tnc VMSP identifies

all fill positions and creates maps of the L and Ii matrix factors.

Array results IU and JU from VMSP form a vectorized U symbolic map .

IVIJ (J) is an index pointing to the start of the J’th column of

numeric elements in the (yet to be calculated) packed U numeric

a r r a y .  S i m i l a r l y ,  IVA points to the start of each column in the

packed A numeric array. IL , JL , and IVL describe the L matrix.

We shall examine how these arrays are determined.

The method for finding symbolic fill loops through each column .

Coun ters are kept and updated for symbolic and numeric positions

in L (m d  U. These are used for JU , JL , IVU , and IVL . The per-

muted A column is converted to scalar row indices , row permuted ,

and c o n v e r t e d  back into vector form . The code then loops throug h

each U position , examining the corresponding L column and updating

or inserting vectors in the current column to account for fill

locations. When there are no more U positions , the vector repre-

sentat ion of this column is a map of LU for that column . lt is

split at the diagonal and copied to IU and IL. The symbolic pro-

cessing of this column is now complete.

2. \umeric factori:ation

The A numeric ari ’ay and all symbolic information is input to

the numeric factorization routine ~~~~ Since column ordering is

(83)
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V ECIi S SU I )lO Il t ifl CS

Symbolic ~rMs
p

V SORT
N u m e r i c

F a c t o r i : at i o n  ( F o r t r a n )  VMNP
Fact. (Fortran - Assembly , VMNPF

column-ordered) VMNP A
Column-ordered substitutions VMBPC
Row-ordered substitutions VNBPR

VEGES/P subroutines

Symbolic ZMSP
VSORT
:BREAK
ZM SPO

Numer i c
Factorization ZMNP

ZMNP I
ZMNPA
Z MN PB
ZMNP O

Column-ordered substitutions Z M BP C
Row-ordered substitutions ZMBPR

I/O routines Z L I B

Symbolic and numeric preprocessing UNBLOK
into column-ordered vectorized 

- VSORT4
lists from randomly-ordered (‘~~~~~~ ) ,  ABLOK
b lock ,or finite element lists

Table 16. Subroutine lists for factorization
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-~ used , standard 1_ li facto I’ i zat ion i s ca rr i ed Ou t  115 I i i g  i : ( (  . ( 1 2

- - Re tu r n ed a rc  packed n u m e r i c  a r r a y s  L and U c o r r e s p o n d i ng  to  1 V I

-

- -: and IV t J , r e s p e c t i v e l y .  A l s o  r e t u r n e d  is  1)1 , an a r r a y  of t h e  i n v e r se

pivot elements.

Looping throug h each column , the symbolic bounds for this

column in U and L are picked up from JU and JL. These point to

- 
- - - this column in Ill and IL. The bounds of this (permuted) column

in A are re trieved. Calculations are done on a full column 1 en g t h

-t (unpacked) numeric array illustrated in Figure 4 a .  Row per mu te d

A values are copied into this (initially zero) scratch array . We

now ioop throug h each U position in this column . The numeric

multi plier is copied into U and bounds on the corresponding L

column are examined. Executing as a vector instruction , the packed

1 column times the numeric multi plier is put in another scratch

array T*. Looping throug h each L vector , values from T are sub-

tracted from t h e  c u r r e n t  X c o l u m n  as in Fi gu re  3 . A f t e r  a l l  U

e lemen t s in X have  been  c o n s i d e r e d , t he  i n v e r s e  of t h e  d i a g o n a l

i s stored in DI. Remaining L vectors in X are multiplied by the

inverse diagonal and stored in packed form in L. This process is

executed for each column of the matrix.

3. Forward and back subs titution

T h i s  s t a g e  of  the solution solves the two systems L y = b and

U x = y . Given numeric and symbolic L and U arrays and DI and B ,

the right hand side , VMBPC employs Equa tions 13 and 14 to solve the

*This describes the option when separated multi ply and sub tract
i n s t r u c t i o n s  a r c  u s e d .
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fo rward  and back sub st i tu t ion . The so lu ti on vec tor x is re turne d

in B after the appropriate permutations.

The r i ght hand side is first row permuted into a scratch vector

X . Loop ing throu gh a l l  bu t the la st column in the forward sub-

stitution , for column J, X(J)  t imes the packed L column is stored

in the tempor ary array T in a vec tor ins truc tion. This packed T

array is subtracted from the X vector , aga in as in Fi gure 3. Com-

pleting the forward substitution , the X vector now con ta ins ~~~~.

Th e back sub stit u ti on proceeds sim ilar ly  f r om the last col umn

throu gh the second column , thoug h X(J )  is f irs t mul tipl ied by the

inverse d iagonal . The solu t ion in X is las t transferred to B

using the column permutation.

4. Conc lusions

Figure 13. is a f low diagr am f or this non-par tit ioned pro gram ,

show ing input and resul tant arrays . The symbol ic  p roces sing is

executed f i r s t and is indep enden t of any numeric  arr ays . The

re sul t of this is an L U map which can be used for any matr ix  of

this size and structure. Next the numeric factorization and

forward and back substitution are carried out on the A matrix

and ri ght hand side. Note that for different A numerical values

on ly VMNP and VMBPC mus t be repea ted , and , when B changes , only

VMBPC need be repeated. If the matrix is originally given in

row order , VMBPR is u sed in place of VMBPC .

G . Fortran Implementation (VEGES/P)

1. Symbolic processing

Symbol ic  processin g in VEGES /P does no t con sider the ma tr ix
(8 6)
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partitioned ,asSUm1n~ that all symbolic descriptors can all fit

into local stores. This assumption aids the partitionin g process

considerably, aitnough possibly restricting the size of problem s

which may be solved.

The symbol ic  par t of VEGES IP does no t produce separa te poin ter

ar r ay s in to L and U , so that vectors may cross the diagonal. This

aids numeric computation in the factorization routines , as f i ll

vectors are not broken unnecessarily. Symbolic vectors are describ-

ed in IX , a combin ation of IU and IL in VEGES . JU and JL point

into IX , with JL pointing to the first vector that runs into L.

IVU and IVL point into separate L and U arrays. JL and IVL will

no t be pas sed to the numeric rou t ines because the diagonal can

be easily recognized by comparing the row index with the column

number whi le  stepping throug h U vec tors , thus saving the I/O necessary

to transfer these arrays. Besides these symbolic descrip tors , arrays

LA and KA are passed to the numeric routines; these correspond to

JA and IA except that row and column permutations have been applied.

2. Partitioning

Results from symbolic processor ZMSP are passed to an

in te rac t iv e rou t ine ZBREAK , which , on the basi s of an entered
maximum variable array storage , calcula tes where the ma tr ix should

he pa r t i ti oned. The corr espondin g buf fe r  s ize  for  each of thes e
str ips is di sp layed , as well as the number of the first recalled

1, stri p needed for factorization of each current strip. Maximum

over all b u f f er s i z e s are p r in ted for use in accur ate dimension ing
of a factorization and/or substitution driver program . An alterna-

t ive to this automatic partitioning is also available; here the

number of the first column of each strip is entered. The total

(87)
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number of by tes read and wri tten i n ZM NP i s  a lso presen ted ,

• giving an indication of the effect of breaking on I/O operations.

Once a set of par ti t ion s is decided upon , ZMSPO is ca l led  to

wr ite ou t the two symbolic da ta f iles , IAUN I T and I N U N I T .  JAUNIT

contains information needed to reformat the A matrix into numeric

buffers in ZMNPI. These arrays are JA , IA , LA , KA , and KVA . Each

b u f f e r  conta ins the sect ion of these arrays per taining to tha t

str ip. Note tha t strips are in the permu ted ma tr i x .  JA and LA are

ad jus ted to poin t into the bu f fe r  loca t ions of IA and KA , respec t-

ively. Vector KVA is created here and points into the X numeric

buffer (combined L and U strips) to be written on JAUNIT , indic at-

ing the start of every permuted A vector so that , when the b u f f e r

is initialized , valu es can be ea si ly trans fe r red .  I NUN I T is read

by ZMNP and provides the symbolic descri p tion for  each X block .

Firs t , however , pcrmuta-tion vectors IPC and IPRI are written out

for use in ZMNPI and ZMBPC . To describe the X block , arrays  IVU ,

JIJ , and IX are broken and written out. IVU is adjusted to point

into the X numeric buffer and JU to point into IX in the buffer.

Header informa t ion is wri tten Out wi th each buf fe r , including

b u f f e r  number , column range , and f i r s t L str ip for the numeric

fac tor iz at ion and subs ti tution rou tines.

3. Str ip numeric fac toriza tion

The numeric factorization process is broken up into several

steps (Fi g 2 3) . Subrou t ine ZMNP I is called once , ini t i a l i z ing the

X numeri c b u f f e r s .  Permu tat ion vec tors are pass ed to ZMNP I , which

reads symbolic information from IAUNIT. The A matrix is input on

file NAIJNIT in unpermuted order , wri tten one column per lo g ical
It

(88)
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record. File Pointers to each column are read i n  from IB(INIT. 
a

(The se f i l e poin ters were picked up when th e mat r ix  was be in g

written , and are the responsibility of the user. Also on IBUNIT

is the ri gh t hand side , to be read by ZMBPC . No te tha t wi th this

method of storing the A matrix , only one column mus t be in memory

at a t ime , bu t other methods are possible , depending on the l imi t-

ations of the sys tem. )  Strip by strip , the ma tr ix  is permu ted and

fill positions are set to zero . The resultant X numeric buffer is

copied ou t to JAUNIT , to be read la ter in ZMNP. All  partitions are

processed at this time so that buffer space needed here can be over-

lapped wi th space used in the fac tor iza t ion .

4. Numeric fac tor iza t ion

Fac tor iza t ion takes place one str ip  at a time. ZMNP reads symb oli c

and numeric informa t ion from INUN I T and JAUNIT , respec tively,  before

passing con trol to ZMNPA . This rou tine is given the number of the

f i r st L str ip  needed and an array of pointers to the start of L

strips written on ILUNIT. The last array position set points to the

curren t str i p ,  or an end-of-file , since the curren t str ip has no t

ye t been fac tored. (No te tha t if a f ile sys tem ha s no poin t in g

f a c i l ity , ILUNIT can be rewound and buffers read starting from number

on e . The pr ice  paid is some unnecessary I/ O , dependin g on the ma tr ix

structure.) Having read an L buffer , ZMNPA performs the normal

numeric computations which involve only these two ( X and L) parts
of the ma tr ix .  L bu f fe r s  are read and compu tati ons performed

un til an end-of-file (up to the current strip) is encountered on

I LUN I T.  ZMNPB is called to perform numeric compu ta t ion wi thin the

curren t X strip and put the inverse diagonal in DI; the result is

(8 9)
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a comple tely factored strip of the L U matrix. In ZMNP numeric

compu tat ions there are only two d i fferences from VMNP . Ins tead

of opera ting on an expanded (unpacked) column before packin g it

into the L and U arrays operations arc carried out on the already

packed X numeric buffer. The packed buffer option was specified

by the preformatting of the X numeric buffers. Symbolic and

numeric pointers have been kept for each column pointing into

the U part of the X block. As we step through U, these end up

pointing to the start of L. These are effectively IVL and JL.

With IVL, JL , lvii, JU , and IX , we have the information to

separate the X block into L and U and write these buffers out

as ILIJNIT and IUUNIT, respectively. This is done in ZMNPO . IX

is broken at the diagonal , JL and JU adjusted to point into their

respective parts , and likewise the numeric buffer is broken and

IVL and IVU adjusted. Buffers , with appropriate header information ,

are written out and the position of the ILUNIT file is noted for

use in ZMNPA . This completes the operation on this strip, and

the next symbolic and numeric buffers are read in.

5 . Forward and back substitution

ZMBPC is input permutation vectors IPC and IPRI , data files

ILUNIT , IUUNTT and IBUNIT, DI and vector B , sCtatch vector X

and space for any buffer on the L and U data files. ZMBPC performs

the forward substit ution on I. bu ffers , readi ng t h e m  sequclit iaHy

from ILUNIT . In the back subst ituti on , however , the Ii buffers must

be retrieved in reverse order. This can be accomplished in various

(90) 
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ways , using ei ther IBM Fortran direc t I/O , the BACKSPACE statement ,

or some system routine taking advantage of a particular file sys-

tern .

The dr iver program included wi th the vectorized sparse ma trix

package creates a sequence of randomly-positioned matrices with

randomly- selected pivot orders. It is intended as a test program ,

checking the solution vector against one generated with the matrix

and flagging errors; it also gives an illustration of program flow

and subroutine calls.

A similar driver and matrix generator is included wi th the

partitioning package , with the addition that matrix break points

are rand omly genera ted , and the routine interpreting these breaks

has been made non-interactive for convenience in running many

matrices.

The above program can be used as a non-in teractive test program ,

but by setting a flag , the break point generation will be bypassed

and full interaction with the breaking routine is possible.

$ (91)
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N ,IA ,JA (vec torized) A inatrix structure ,
IPC ,IPRI  permutation vectors

[ZMS P I Symbolic preprocessing

IVA ,IX ,LA ,KA , A permuted structure L U

JU ,IVIJ ,JL ,IVL vectorized structure

_____ 
Calcula te and displa y ZMN P ,

r~ REAK 1 ZMBP bu f f e r  s izes based on
ma tr ix breakpoin ts.

NBRKS ,TBREAK , Final ma trix breakpoints ,
I SYMPL ,ISYMPIJ, symbol ic positions per column ,

I LBLK f i r s t L block needed for every
X strip in numeric factorization .

• I ZMS!~] 
Adjust array to conform to matrix

par tition ing ,  form bu f fe r s ,
output on IAUNIT , INUN I T .

IAUN IT Symbolic data files. 
- •

I NUN IT

Figure 22. Symbolic factorization flow chart for partitioned
matrix solver
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I A U N I T . I N U N 1T  Sy m b o l i c  d a t a  f i l e s .

— 

~ Numeric fac to r i z a t ion

Reforma t and permute A ma tr ix.

JAUNIT Ini tial X numeric bu f fe r s .

_ _  

I
~~~>~~MNPA] Numeric operations on preceding L

1 blocks , beginn ing wi th pre scribed L
V block

[~ 1NP~i~ I Numeric oper at ions wi thin this  bl ock .

• I ¶ DI Inverse dia gonal .

[ZMNPO
~ Reforma t X block into L and U and

wri te ou t .

_____I LUNIT , L and U symboli c and numeric  bu f f e r s .
I UUNIT

I LUN I T ,TUUN I T ,DI Fac tored ma tr i x .

[i~tB PC ,or Forward and back subs titu tion.
IBUN I T~~~4~~(_ZMB PR

B Solution vector.

I
Figure 23. Numeric factorization and substitution flow chart
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A p p e n d i x  A

Numer ical Experiments

1

• I. Introduction

Two dominan t issues related to the efficiency of a vectorized

sparse equation solver are

1) matrix size and density,

2) the compatibility of matrix structure and

computer architecture.

Therefore , an experimental study should involve a class of matrices

of increasing size , wi th documented densi t ies and structural

regular i ty .

Although these properties can be synthesized relatively m dc-

pendently of one another by generating variants of randomly-

positioned matrices , such studies are often viewed as unrepresent-

arive of commonly-encountered sparse matrices. For this reason ,

the matrices in this study are either taken directly from an

application or synthesized according to grid (mesh) generation

rules assoc i ated with finite element problems , solved by dissection

methods [1].

II. Finite-element Matrices

Illus trated in Figure Al (a) , the nodes of a rectangular 2-

dimensional linear finite element grid are numbered in a prescribed

manner [1] so as to yield local decoupling of rows and columns of

the associa ted matrix , the local coupling replaced by a distributed

coupling throughout the matrix. This dissection process proceeds

routinely so long as the number of nodes/side is 2’~-l , and is
$
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X X X X

7 9 X X X X
X X X X

X X  X X X ~~3 6 4 
~~~ ‘ x x x

Four elemen t X X * X * X 0
gr id  and * * * * * * X *connec tivi ty 

* X * * 0 X *
Assoc iated ma tr ix (X)

and f i l l ( 0)

Fi gure Al. Simple dissected grid and matrix

2 3  4 

~9

51X 4Y\ X7>< >< 8 20 39 25

TX~ >K’>(><><>< 43 4 45 46 47 48 49

i lIc 
: 29 31 

•
27

Grid connec tion Second ( l igh t)
and initial dissected and third dissection

node numbering stages

Figure A2. Larger dissected gr id
-S
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i l l u st ra t ed for a large r gr id  in U i gurc A2.

Due to the regular  struc ture of thi s f i n i te elemen t f ami l y ,  it

is poss ible to obtain exact arithmetic operation counts and estimates

of the vector counts involved in the matrix factorization. The

asymptotic components of these formulae (for large grids) are given

in Table Al , together with exact counts obtained from experimental

solutions of the matrices. This is intended to establish the

validi ty of the formulae used throughout the report to estimate

computational complexities of problems beyond the range of the

experimen ts.

Tables A2 and A3 give a variety of structural properties and

execu t ion times for n = 2 ,3,4,5. Mos t of the resul ts are ci ted

in context throughout the report. Also included are the timings

and memory requiremen ts associated wi th two early procedures

[6][9] for solving relatively small sparse systems , namely the linear

code and in terpre t ive l is t resul ts of the f ir st and second da ta

co lumns.  The se procedure s are d iscus sed br ief ly  on page 5 . The

observer  wi ll no te the ex treme speed and la rg e mem ory requ iremen ts of

the forme r , and the lack of advantage in either speed or memory of the

latter .  Other compari sons are given in [2][ll).

For the par ti t ioned solu t ion , the fractions of the total solution

t ime devo ted to compu tation , I / O , and other partition-related over-

head are cri t ica l to the evalua tion of the a lgor i thm and its

implememtation. Table A4 displays these timings for a number of

siz es of available local store (Sk) .

-S
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III. Other Sparse Matrices

Three other matrices were chosen for study (Table A S ) ,  ran g in g

f r om a hi gh ly  sparse bu t lar ge power sys tem problem to a f in it e

elemen t pr obl em of lar ge s i ze and grea ter den sit y than the fami ly

c ited in Tab le A2 . Cred its and ref erences are as fo l lows :

1) Electrical power system , from Mr. Walter
Snyd er , American Elec tric Pow er ;

2) Thr ee -d imens ion al 44-body mechan ism mode l of
Boeing 747 landing system [21], f r om Mr . Keith
Brewer of the Fl ight Dynamics Laboratory of Wright
Patterson Air Force Base;

3) Linear , 2 var iable , 2 dimensi onal f i n i te elemen t
model of MESFET transistor [22], from Dr.  John
Barnes , Amer ican Microsy stems .

I
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M at r ix  M a t r i x  I n n e r  I~OO l)
1) imc n s  ion Storage Computzi t ion~

A L U I a c t o r i z a t i on  F . ~ B. Sub.

9 2 . 8 8  L91 2.b2 1.97  (2 .31)  2 • 2 5  ( 2 . ~~2 )

49 2 . 7 1  2 . 7 4  2 . 7 1  2 .9 2  (4 . 15)  2 . 5 3  ( 3 . 7 8 )

225  2 . 8 7  3 .71 2 . 9 7  4 . 4 2  (6 .69 )  3 .34 (5.29)

961 2 . 9 3  4 . 8 3  3 .86 6 .8 5(10 .6 )  3 .86  ( 7 . 0 7 )

*presented as: successive m u lt i p ly - s u b t r a c t ( s e p a r at c  m u l t i p l y -
s u b t r a c t )

(a)  Average Vec tor  L e n g t h s  ( w o r d s )

Table  A2.  S t r u c t u r a l  p rope r t i e s  of
finite element experimental problems

M a t r i x  LU Storage * (by te s )  
~~~~~ 

% non -z e r o~
D i m e n s i o n  Numer i ca l  (*8) Symbol ic  (*2 )  A LU A LU

• 9 336. 62 .  5.44 2.33 60 .5 58.3

49 4 , 880. 752 .  7 .36  6 . 2 2  I 5 . ( )  2 5 . 9

2 2 5  40 , 848.  5 , 376. 3 . 2 1  11 .3  3 . 6 5  10 .1

961 2 6 7 , 280 .  31 , 71 2. 8 .61  1 7 . 4  .897  3 .62

*Unit  d iagona l  not included

(b) Dens i ty

Table  A2 .  S t ruc tura l  proper t ies  of
f i n i t e  element  exper imenta l  problems
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U Appendix  C. Ma in Programs for Solu t ion
of F i n i t e  Element  Grid of Figure 19

IMPLICIT REAL *8 (A—H ,O-Z)
C
C SYMBOLIC MAIN PROGRAM FOR EXAMPLE OF FINITE ELEMENT
C PREF-ROCESSING . SEE VARIABLE DESCRIPTIONS INTERNAL TO
C SUBR O U T I N E S .
C
C DIMENSIONS FOR ROUTINE UNBLOK
C

INTEGE R*2 IPART ,LEN , IA ,NA
DIMENSI ON IPART (6) ,IXP(6)
DIMENSION N A( 10 4)
DIMENSION MAP ( 1OQ 0 ,L EN( i00O) , IPBC i000)~~JP B(1000 )
DIMEN SION JP1 (47),IVA (47),JA (47)vIA(260)
INTEGER N/46/
INTE GER IVEC/0/ , NUMBUF/2/ , NFAR T/5/ , NBC/8/
DATA IF’ART/i~~11~ 2i.31,41.47/
DATA IXP/i,25,49,73,97,97/
DATA NA/ i .2,3,3,4,5,1 ,2,6,2.3.8,3~4.8,4,5,i0.

C 2,6,8,4,8,10,
C 6,7,8,8.9,10,6,7,i1,7,8,i3.8.9.i:3,9.1O.15.
C 7,11,13,9,13,15,
C 11,12 ,i 3,i3,14,15,11,12,16.12 .i3.18~ 13.14~ 18~
C 14,15,20,12,16,18,14,18,20,
C 16,i7,18,18,i9,20,i6,i7,2i.i7.i8.22,18,19~22.
C 19,20,23,17,21.22,19,22,23,
C - 1,2,5,9,41,43,45,46/
INTEGER IMU NIT/0/

C COMMON TO ROU T I N E  UNBL OK
COMMON /FEL/ N VAR,NNOtIE

C COMM ON TO ZLIB I/O ROUTINES
COMMON /ZLEN/ MAXLE N

C
C DIMEN SIONS FOR ZMSP , ZBREAK , ZMSPO
C

INTEGER*2 IX ,IXT ,IXB ,IP ,ICNT ,IPC ,IPR IcKAvIXBUFF
DI MEN SION IBR E A l~C 5 i)
DIMENSION IPC (46) .IFRI(46)
DIMENSION ISYMF -L (46),ISYMPU (46),IKVA (46)~~IUPOS (46)
DIMENSION JU (47),JL (47) ,IVU (47) ,IVL (47)~ LA (47)
DIMENSION IFT R(47).IXT(47 ),IXBC47)~~IP(47)DIMENSI ON ~A (260> ,IXC3O 0)
DIMEN SION JXDUFF (500) ,IXBUFF (1000)
EQUIVALEN CE (IXRUFF ,JXDUFF)
DATA IF- C/i .2,3,4,5,6,7.8,9,10,11,12, 13,14,15,16,17,18,19,20,

C 21,22,23,24,25,26,27,28,29,30,31.32,33,34,35v36,37.38.39.
‘ C 40.41,42,43,44,45.46/

DATA IPRI/1,2.3v4,5,6,7,8,9. 10,11.12,13.14,15.16, 17,18.19.20.
C 21 ,22.23.24.25~ 26.27.28.29.30,31 .32,33.34 .35.36,37.38,39,40.
C 41.42.43,44.45.46/
INTEGER IAUN IT/ 1/ .INUN IT/2/
INTEGER MAX C~1T/ 1 / , MAXKA /260/ , MAXXS /300/

C COMM ON TO ROUTINE ZE IREAVS
• COMMON /SIZE/ MAXT IR.MA X TIX ,MA XTA ,fIAXTZ B

C COMMON TO R O U T I N E  ZBREA N
COMMON /IN IACT / IPR

C• C
NVA R= 2
NNO DE= 3t -, 
MAXL EN= 32758

1 ’  C
U- C NUMERI C BUFFER SIZES — NOT APPLICABLE IF

C SYMBOLIC AND NUMERIC RUN SEPARATELY
C

N A X T I B~ 10000
MA X TIX— 10000
MAXTA — 10000
MAXT ZB= 10000

C 
IPR= 1 (104)
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C
C SY~ BOL IC FINITE E1CM~ NT A ND BLOCK FREF SOCE SSING
C

CALL IJNBLQIU-(N,NA. EAF - ,NEIC ,NFAR T ,1P ,~R-T.1vEC ,NU1I!UUF .jflL~N I1 , —
C IPB ,JPB ,JFi.K1 ,M ~ F .L LN ,IADIM .IJA ,JA ,IA )

C
C WRITE A NUMERIC PUFFER DIMENSION
C

ID— IA D IM *NUMI 4UF
PRINT 1,10

1 F0RMA1C ’orUIM ENSION A (’,I S.’)’)
C’
C SYMBOLIC MATRIX FACTORI ZAT ION
C

CALL ZM SP (N.JA . IA ,iVA .JU~JL .IX .IVU . IVL .IXT~ IXB. IP.
C ICN T .MA XXS .MAXC N 1 ,IFC ,IPRI.LA.KA ,MAXKA )

C
C INTERACTIVE MATRIX PARTITIONING
C

CALL ZBREAK (N .IVA, JA.LA .JU .JL .IX, IVU .IVL .NBRKS .IBREAK.
C ISYMF-L.ISYIIPU.INVA.ZUF OS .IPTRr&2)

C
C OUTPUT SYMBOLIC MATRIX PARTITIONS
C

CALL ZMSP O (N.IVA .IA ,JA.LA .KAiJU . IX . IVU , IIJL, IPC.IPR! , I~~REAK .
C NBRKS ,IXBUFF .JXBUUF.ISYMP L .ISYM FU ,IFTR ,IAUN IT ,INU NI T)
2 STOP

END
IMPLICIT REAL*8(A-l-l.O-Z)

C
C NUMERIC MAIN PROGRAM FOR EXAM PLE OF FINITE ELEMENT
C PREPROCESSING . SEE VA R IABLE DESCRIPTIONS INTERNAL TO
C SUBROUTINES.
C
C DIMENSIONS FOR ROUTINE AE ILOK
C

INTEGER*2 IPART.LEN .NB
D IMENSION IPART (6I vMAPC300).NB (16)
D IMENSION IVA ~47)
DIMENSION A (248),P (46)
INTEGER N/46/
INTEGER IMUNIT/0/ .NAUN IT/3/ .IBUN IT/4/ .NBUN IT/5/

C
C DIME~SIONC rOR r~oUr xu Es ZMNP. ZMBFR
C

INTEGIR*2 IPC .IPRI , IXBUFF .IBI~UFF
DIMENSION IFC (4 6).IPRI(46),IPTR(46)
DiMENS ION DI (46),X (46)
DIMENSION XBUFF (308) .JXBUFF(616),IXBUFF (i232 )
DIMENC ;ION XE IU FFI (223) ,JE {E4UFFC 446) ,IFIBUFF(892)
EQUIVALENCE (IX IIUFF .JX EI UF F ,X BUF F,A )
EQUIVALENC E (IBBUFE ,JEI EUUFF ,XEIUF~~I,IXBUFF (73))
INTEGER IAUN IT / 1/ ,INUN IT/2/
INTEGER JA UNX T/8/ . ILU UIIT/9/ , IUUNIT/10/

C COMMON TO ZLXB I/O ROUT INES
COMMON /ZLEN/ MA XLE N

C
C

MAXL EN 32758
C
C NUMERIC FORMULATION
C

CALL NF INI (N .A 1N BUNI T)
C -

C NUMERIC FINITE ELEMENT AND BLOCK PREPROCESSING
C

CALL ABLOK(N.N PAR T , IPAR T,NB ,MA F- ,LEN , IVA .A.B.
C IMUNI T ,NTUuNI TPNAUNIT ,IE IUNIT)

C
C NUMERIC M A T R I X  F A C T O R I Z A T I O N

• C
CALL ZMNF (N .A.ZBBUFF .JEIPUFF4XPLJFFI , IX?IJFF.JXBUFF ,XBUFF. IPC .

C IFRI ,DI ,IPTR ,IAUN IT ,NAUNI T ,IE1UNI T,JAUN IT ,INUN IT ,ILUNI T ,
C IUUN IT )

p C
C ROW ORDER FORWAR D ANT’ BACK SUBSTITUTION
C

CALL ZMI IFR U4 ,IXE UU FF ,JXBUF F ,X BUF E,IBI JNIT ,ILUN IT ,IUUN IT ,
C D 1 ,B .X .IPC .IPRI)

C -

C WRITE SOLUTION VECTOR
C

PRINT 1 , ( E s ( t  ) .I’-ivN)
$ I FORMAT (-OSeLN VEC / (5G14 .Z))

STOP
END 
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